南大通用gbase数据库的可化工具。适用于windows,请按需下载。文件较大,附件为网盘地址,请自行下载
2026-01-31 14:51:05 114B gbase windows 南大通用
1
随着信息技术的快速发展,大数据技术已经成为处理和分析海量数据的重要手段,尤其在旅游行业中,大数据的应用对于旅游业务分析、市场预测、客户服务等方面具有显著的推动作用。设计与实现一个旅游大数据可化分析系统,可以让管理者和相关人员直观、高效地获取各类旅游数据信息,为决策提供有力支持。 旅游大数据可化分析系统通常包括数据收集、数据存储、数据处理、数据分析和数据展示五个核心环节。在数据收集环节,系统可以连接多种数据源,包括在线旅游平台、社交媒体、地理信息系统、旅游咨询网站等,通过爬虫技术或API接口,实时收集用户的评论、点赞、分享以及旅游景点的客流量、天气情况等数据。在数据存储环节,系统通常采用高性能数据库如MySQL,以保证数据的安全性和稳定性。 数据处理和分析环节是系统的核心,它需要强大的算法来清洗、整合和分析数据,从而得到旅游者的行为模式、旅游市场的发展趋势以及潜在的商业机会等重要信息。例如,通过聚类分析可以发现某一地区的热门旅游景点;通过关联规则分析能够挖掘游客的消费习惯和偏好。这些分析结果将为旅游企业制定营销策略和产品优化提供依据。 在数据展示环节,系统通过可化技术将复杂的数据转化为直观的图表或图像。例如,利用柱状图、折线图展示某个时间段内的旅游人数变化;利用地图和热力图直观显示旅游景点的热度分布。通过这样的可化方式,即便是不具备深厚数据分析背景的用户也能够轻松理解和掌握数据背后的信息。 本系统的设计与实现采用Java Web技术,结合前后端分离的开发模式,前端使用Vue框架,提高了系统的用户交互体验和页面的响应速度。此外,系统支持多种数据分析模型,并采用模块化设计,方便未来的扩展和升级。 整个系统的设计充分考虑了易用性、可扩展性和安全性,为用户提供了一个强大的旅游大数据分析平台。通过该平台,用户可以便捷地进行数据查询、统计和可化展示,从而为旅游市场的研究、规划和管理提供科学的数据支持。 系统不仅适用于旅游企业和政府旅游管理部门,还可以为旅游研究者、市场营销人员等提供分析工具,帮助他们更好地理解市场和用户,制定有效的市场策略。随着旅游业的不断发展和大数据技术的不断进步,旅游大数据可化分析系统必将发挥越来越重要的作用。
2026-01-28 21:37:47 2.87MB java web vue mysql
1
C# WPF上位机基于Modbus RTU实现串口通信与可化数据处理,支持实时报警与历史查询,结合MVVM思想开发报表及数据可化功能,C#WPF上位机 Modbus RTU通讯协议 使用MVVMLight框架 MVVM思想 进行项目分层 使用NPOI可进行导入Excel表格 制作报表 学习专用 使用Modbus Poll 以及Modbus Slave仿真实践通过 仿真实践项目 使用SerialInfo 进行 RTU 自己写一些简单的读写操作 可实时显示 串口仿真方传来的数据 进行可化处理 可查询以往报警数据 在历史曲线可以看到历史 三台机器的报警比例 以及次数 , 还有报警时间以及报警数值的可化 可以查询历史报警数据 精确到秒 ,C#; WPF; 上位机; Modbus RTU; MVVMLight框架; MVVM思想; 项目分层; NPOI; Excel报表; Modbus Poll; Modbus Slave; SerialInfo; RTU通讯; 读写操作; 实时显示; 串口仿真; 数据可化; 查询报警数据; 历史曲线; 报警比例; 报警次数; 报警时间; 报
2026-01-27 07:50:17 395KB 开发语言
1
本工具是一个高效的重复图片清理解决方案,专为摄影师、设计师和需要管理大量图片的用户开发。通过智能算法快速识别重复图片,支持三种清理策略,并生成可化HTML报告。 核心功能: 1. 多格式支持:兼容JPG/PNG/GIF/WebP等9种常见图片格式 2. 智能比对:采用文件大小+MD5混合指纹技术,准确率高达99.9% 3. 多线程加速:自动根据CPU核心数优化扫描速度 4. 灵活策略:支持保留最早/最新文件或手动选择 5. 可化报告:自动生成带缩略图的HTML报告,方便预览 技术亮点: • 使用Pathlib实现跨平台路径处理 • 基于文件大小的预筛选大幅提升效率 • 线程池并发计算文件哈希值 • 支持生成带图片预览的清理报告 使用场景: • 清理手机/相机导入的重复照片 • 整理下载的素材库 • 优化网站图片资源 • 释放磁盘空间 使用方法: 1. 运行脚本后输入要扫描的目录路径 2. 选择清理策略(保留最早/最新/手动选择) 3. 查看自动生成的报告确认要删除的文件 4. 执行清理操作 注意事项: • 首次使用建议先选择"manual"模式熟悉流程 • 重要文件建议先备份再操作 • 支持Windows/macOS/Linux系统 适合Python 3.6+环境,无需额外安装依赖库。
2026-01-26 13:32:38 7KB python工具
1
我们基于A∞的同构摄动引理,阐明了光锥和协变弦场理论之间的一些确切关系。 协变弦场分为光锥弦场和BRST四重奏的平凡激发:后者产生了规范的对称性和协方差。 我们首先表明,可以通过应用引理来执行规度的降低,这给出了协变字符串的无鬼定理的改进版本。 然后,我们证明了简化后的规范固定理论可以被为一种有效的场论,它考虑了相互作用,提供了一种精确的规范固定程序。 结果,从维滕的开放弦场理论中获得了新颖的光锥弦场理论。
2026-01-24 16:01:05 492KB Open Access
1
SpaceSniffer是一个可以让您硬盘中文件和文件夹的分布情况的应用程序。SpaceSniffer可以很直观的以区块,数字和颜色来显示硬盘上文件夹,文件大小。还能用筛选器过滤出要找的文件。点击每个区块能进入该文件夹得到更详细的资料。
1
标题Django与深度学习融合的淘宝用户购物可化及行为预测系统设计AI更换标题第1章引言介绍系统设计的背景、意义,分析国内外在淘宝用户购物行为预测与可化方面的研究现状,并指出论文的方法及创新点。1.1研究背景与意义阐述淘宝用户购物行为分析对电商平台的重要性及可化预测系统的价值。1.2国内外研究现状综述国内外在电商用户行为预测与可化领域的研究进展及成果。1.3研究方法及创新点概述系统设计采用的方法,并突出与现有研究相比的创新之处。第2章相关理论总结和评述深度学习及用户行为预测相关理论,为系统设计提供理论基础。2.1深度学习基础理论介绍神经网络、深度学习模型及其在用户行为预测中的应用。2.2用户行为预测理论分析用户购物行为预测的原理、方法及影响因素。2.3可化技术理论阐述数据可化技术的基本原理、方法及应用场景。第3章系统设计详细描述基于Django与深度学习的淘宝用户购物可化与行为预测系统的设计方案。3.1系统架构设计介绍系统的整体架构,包括前端、后端及数据库设计。3.2深度学习模型设计阐述用于用户行为预测的深度学习模型的选择、构建及训练过程。3.3可化模块设计如何实现用户购物数据的可化展示,包括图表类型、交互设计等。第4章数据收集与分析方法介绍系统设计中数据收集的途径、分析方法及数据处理流程。4.1数据收集途径说明从淘宝平台获取用户购物数据的具体方法和途径。4.2数据分析方法阐述采用的数据分析方法,如统计分析、机器学习算法等。4.3数据处理流程数据清洗、预处理及特征提取等数据处理步骤。第5章研究结果呈现系统设计的实验分析结果,包括预测准确率、可化效果等。5.1预测结果分析通过图表和文本解释,展示系统对用户购物行为的预测准确率及效果。5.2可化效果展示通过截图或频等形式,展示系统实现的用户购物数据可化效果。5.3对比方法分析与其他类似系统进行对比分析,
2026-01-23 10:42:48 15.3MB python django 深度学习 mysql
1
本项目旨在通过MATLAB实现基于BP神经网络的小型电力负荷预测模型,并对电力负荷数据进行预处理,采用反向传播算法进行训练,同时在训练过程中优化隐藏层节点数,选择合适的激活函数,并使用均方误差作为性能评估指标,最后通过可化分析展示预测结果。该项目不仅适用于教学演示,还能够帮助研究人员和工程师深入理解电力负荷预测的算法过程和实际应用。 电力负荷预测作为电力系统规划和运行的重要环节,对于保证电力供应的可靠性和经济性具有关键作用。随着人工智能技术的发展,BP神经网络因其强大的非线性映射能力和自学习特性,在负荷预测领域得到了广泛应用。通过MATLAB这一强大的数学计算和仿真平台,可以更加便捷地实现BP神经网络模型的构建、训练和测试。 在本项目中,首先需要对收集到的电力负荷数据进行预处理。数据预处理的目的是提高数据质量,确保数据的准确性和一致性,这对于提高预测模型的性能至关重要。预处理步骤可能包括数据清洗、数据标准化、去除异常值等,以确保输入到神经网络的数据是有效的。 接下来,利用反向传播算法对BP神经网络进行训练。反向传播算法的核心思想是利用输出误差的反向传播来调整网络中的权重和偏置,从而最小化网络输出与实际值之间的误差。在训练过程中,需要仔细选择网络的结构,包括隐藏层的层数和每层的节点数。隐藏层节点数的选择直接影响到网络的学习能力和泛化能力,需要通过实验和交叉验证等方法进行优化。 激活函数的选择同样影响着神经网络的性能。常用的激活函数包括Sigmoid函数、双曲正切函数、ReLU函数等。不同的激活函数具有不同的特点和应用场景,需要根据实际问题和数据特性来选择最合适的激活函数,以保证网络能够学习到数据中的复杂模式。 性能评估是模型训练中不可或缺的一步,它能够帮助我们判断模型是否已经达到了预测任务的要求。均方误差(MSE)是一种常用的性能评估指标,通过计算模型预测值与实际值之间差值的平方的平均数来衡量模型的预测性能。MSE越小,表明模型的预测误差越小,预测性能越好。 预测结果的可化分析对于理解和解释模型预测结果至关重要。通过图表展示模型的预测曲线与实际负荷曲线之间的对比,可以直观地评估模型的准确性和可靠性。此外,通过可化还可以发现数据中的趋势和周期性特征,为电力系统的运行决策提供参考。 整个项目不仅是一个技术实现过程,更是一个深入理解和应用BP神经网络的实践过程。通过本项目的学习,可以掌握如何将理论知识应用于实际问题的解决中,提高解决复杂工程问题的能力。 另外,对于标签中提到的Python,虽然本项目是基于MATLAB实现的,但Python作为一种同样强大的编程语言,也广泛应用于数据科学、机器学习和人工智能领域。对于学习本项目内容的读者,也可以考虑使用Python实现相似的预测模型,以加深对不同编程环境和工具的理解。
2026-01-22 11:04:46 42KB python
1
在探索“ops_utility-python数据分析与可化”这一主题时,我们首先需要了解其背景知识与应用场景。OpenSees,全称为Open System for Earthquake Engineering Simulation,是一个用于地震工程模拟的开放源代码软件框架。它广泛应用于土木工程领域,特别是在结构动力分析、地震工程等方面。Python作为一种高效、简洁的编程语言,其数据分析和可化库(如NumPy、Pandas、Matplotlib等)被广泛用于科学计算和数据处理。将Python应用于OpenSees项目中,可以大幅提升工作效率和结果的可化质量。 在本次介绍的文件内容中,我们看到一系列以.ipynb为后缀的文件,这些是Jupyter Notebook文件,支持Python代码和Markdown文本的混合编写,非常适合于数据科学与工程实践。同时,.py后缀的文件是Python脚本文件,表明该项目可能包含了可以直接运行的Python代码。 具体来看这些文件名称,它们似乎与结构分析和地震模拟直接相关。例如,“sec_mesh.ipynb”可能涉及到结构部件的网格划分,“SDOF_dynamic_integration.ipynb”可能与单自由度系统的动态积分方法有关,“OpenSeesMaterial.ipynb”则可能专注于OpenSees材料模型的探讨。而“view_section.ipynb”和“SecMeshV2.ipynb”可能分别提供了一种可化截面和结构网格的工具或方法。此外,“PierNLTHA.ipynb”可能聚焦于桥墩的非线性时程分析。至于“Gmsh2OPS.py”,这可能是将Gmsh软件生成的网格转换为OpenSees可以识别的格式的Python脚本。 在进行数据分析与可化时,这些脚本和Notebook可以作为工具,用于处理OpenSees软件在进行结构模拟时产生的大量数据。Python的强大的数据处理能力可以将复杂的数据转化为易于理解的图表、图形或其他可化形式,这对于工程师进行结构设计和安全评估至关重要。此外,良好的可化还能帮助工程师向非专业人员展示和解释复杂的工程问题和技术细节。 LICENSE文件表明该软件或项目遵循特定的许可协议,保障了用户合法使用和共享代码。 这个项目所包含的知识点涵盖了从地震工程模拟软件OpenSees的应用、Python在数据处理与可化中的作用,到具体文件功能的探讨。这不仅是一个交叉学科的应用实例,也是现代工程计算中的一个重要组成部分。通过学习和应用这些文件中的内容,工程师和技术人员能够更加有效地进行结构分析和地震模拟,进一步提高工程设计的安全性和可靠性。
2026-01-21 13:49:00 7.16MB python 可视化 数据分析
1
这个是完整源码 python实现 flask,pandas,echarts 【python毕业设计】基于Python的全国气象数据采集及可化大屏系统(Flask+爬虫) 源码+sql脚本+论文 完整版 数据库是mysql 本研究开发了一个基于Flask框架的全国气象数据采集及可化系统。在数字化时代背景下,针对精确及时气象服务的迫切需求,研究集成了数据爬取技术、数据库管理和可本研究开发了一个基于Flask框架的全国气象数据采集及可化系统。在数字化时代背景下,针对精确及时气象服务的迫切需求,研究集成了数据本研究开发了一个基于Flask框架的全国气象数据采集及可化系统。在数字化时代背景下,针对精确及时气象服务的迫切需求,研究集成了数据爬取技术、数据爬取技术本研究开发了一个基于Flask框架的全国气象数据采集及可化系统。在数字化时代背景下,针对精确及时气象服务的迫切需求,研究集成了数据爬取技术、数据库管理和可化工具,提供了一个实时、高效和直观的气象信息平台。系统支持历史数据查询和趋势分析,为科学研究、政策制定和应急管理提供了关键数据支持。研究着眼于提升气象数据的可接入性和分析效率,展现了系统在促进科学决策、提高灾害响应能力和贡献气象科学研究方面的深远影响。、数据库管理和可化工具,提供了一个实时、高效和直观的气象信息平台。系统支持历史数据查询和趋势分析,为科学研究、政策制定和应急管理提供了关键数据支持。研究着眼于提升气象数据的可接入性和分析效率,展现了系统在促进科学决策、提高灾害响应能力和贡献气象科学研究方面的深远影响。化工具,提供了一个实时、高效和直观的气象信息平台。系统支持历史数据查询和趋势分析,为科学研究、政策制定和应急管理提供了关键数据支持。研究着眼于提升气象数据的可接入性和分析效率,展现了系统在促进科学决策、提高灾害响应能力和贡献气象科学研究方面的深远影响。
2026-01-20 14:55:39 89.24MB python项目
1