本书通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程。通过本书介绍的方法,读者只需付出很少的努力,就能掌握有效的贝叶斯分析方法。
2025-07-24 19:07:45 24.7MB 贝叶斯 Python
1
本书基于PyMC语言以及一系列常用的Python数据分析框架,如NumPy、SciPy和Matplotlib,通过概率编程的方式,讲解了贝叶斯推断的原理和实现方法。该方法常常可以在避免引入大量数学分析的前提下,有效地解决问题。书中使用的案例往往是工作中遇到的实际问题,有趣并且实用。作者的阐述也尽量避免冗长的数学分析,而让读者可以动手解决一个个的具体问题。通过对本书的学习,读者可以对贝叶斯思维、概率编程有较为深入的了解,为将来从事机器学习、数据分析相关的工作打下基础。本书适用于机器学习、贝叶斯推断、概率编程等相关领域的从业者和爱好者,也适合普通开发人员了解贝叶斯统计而使用。
2025-07-20 10:57:24 34.45MB 贝叶斯
1
贝叶斯程序库 这是一个包含代码片段的存储库,我在其中使用了不同的Python Bayesian框架进行统计推断。 简单的例子包括: 线性/逻辑回归; 混合模型
2024-04-25 15:42:46 2.77MB JupyterNotebook
1
Matlab Lsqnonlin代码使用重尾分布的混合效应常微分方程模型的贝叶斯推断的Matlab代码 该存储库包含Liu,Wang,Nie和Cao(2018)在文章“使用重尾分布的混合效应常微分方程模型的贝叶斯推断”的第5节中用于仿真研究的Matlab代码。 总共有两个文件夹:“函数”和“模拟”。 文件夹“函数”包括用于SMN模型和常规模型的MCMC算法的Matlab函数。 文件夹“ Simulations”包括要进行仿真的主要Matlab代码。 ====================模拟============================== ================= HMEODE_T.m:主要的Matlab代码,用于模拟分层混合效果ODE模型,其中随机效果是根据Student的t分布生成的。 HMEODE_GeneralizedHyper.m:用于模拟分层混合效果ODE模型的主要Matlab代码,其中随机效果是根据广义双曲线分布(GH)生成的。 HMEODE_MixtureT.m:主要的Matlab代码,用于模拟分层混合效果ODE模型,其中随机效果是根据学生的t分
2023-01-01 16:33:11 148KB 系统开源
1
贝叶斯推断及其互联网应用
2022-10-13 19:05:23 457KB 贝叶斯推断及其互联网应用
1
我也是找了好久,英文“Probabilistic Programming and Bayesian Methods for Hackers”,2分分享给大家,http://www.cnblogs.com/hxsyl/
2022-06-07 10:44:21 7.61MB 贝叶斯 概率编程
1
层次分析matlab代码贝叶斯流行 贝叶斯推断人口患病率。 该软件包包括用于实现贝叶斯流行度推断的Matlab,Python和R的代码,如下所述: 人口患病率的贝叶斯推断RAA Ince,JW Kay和PG Schyns biorxiv: 考虑在心理学或神经影像学实验中的每个参与者,或在电生理学实验中记录的每个单个单元上执行统计测试(具有常见的假阳性率α)。 经过此第一级分析,我们可以仅使用三个数字来计算总体中此类测试的阳性结果阳性率的贝叶斯估计:测试总数n ,其中k为阳性,假阳性率(alpha) a 。 这些数字可以直接在函数调用中指定,也可以从表示在第一级应用各个测试的结果的变量中获取。 example_csv脚本提供了一个示例,该示例加载此第一级参与者内部有效数据并应用第二级患病率函数。 bayesprev_example.{m,R,py}在分层正态模型下模拟数据,在第一级上对每个参与者内的零进行t检验,在第二级上应用贝叶斯流行率推断。 用户可以调整此示例以加载自己的原始数据,将t检验替换为任何其他参与参与者的统计检验,或者直接加载指标变量的重要性并应用第二级检验(另请参见exa
2022-05-14 19:03:36 7.28MB 系统开源
1
本书基于PyMC语言以及一系列常用的Python数据分析框架,如NumPy、SciPy和Matplotlib,通过概率编程的方式,讲解了贝叶斯推断的原理和实现方法。该方法常常可以在避免引入大量数学分析的前提下,有效地解决问题。书中使用的案例往往是工作中遇到的实际问题,有趣并且实用。作者的阐述也尽量避免冗长的数学分析,而让读者可以动手解决一个个的具体问题。通过对本书的学习,读者可以对贝叶斯思维、概率编程有较为深入的了解,为将来从事机器学习、数据分析相关的工作打下基础。本书适用于机器学习、贝叶斯推断、概率编程等相关领域的从业者和爱好者,也适合普通开发人员了解贝叶斯统计而使用。
2022-03-22 23:11:10 34.46MB 概率编程 贝叶斯
1
《贝叶斯方法 概率编程与贝叶斯推断》基于PyMC语言以及一系列常用的Python数据分析框架,如NumPy、SciPy和Matplotlib,通过概率编程的方式,讲解了贝叶斯推断的原理和实现方法。该方法常常可以在避免引入大量数学分析的前提下,有效地解决问题。书中使用的案例往往是工作中遇到的实际问题,有趣并且实用。作者的阐述也尽量避免冗长的数学分析,而让读者可以动手解决一个个的具体问题。通过对本书的学习,读者可以对贝叶斯思维、概率编程有较为深入的了解,为将来从事机器学习、数据分析相关的工作打下基础。本书适用于机器学习、贝叶斯推断、概率编程等相关领域的从业者和爱好者,也适合普通开发人员了解贝叶斯统计而使用。
2022-01-11 16:50:47 35.78MB 贝叶斯
1
高清中文版PDF+高清英文版PDF+源代码, 带有详细书签,可中英文对照使用
2022-01-05 16:45:00 44.22MB 贝叶斯方法 概率编程 源代码
1