标题中的“yolo行人跌倒检测数据集”指的是一个用于训练和评估YOLO(You Only Look Once)模型的数据集,该模型专门设计用于检测行人在图像中的跌倒情况。YOLO是一种实时目标检测系统,因其高效性和准确性在计算机视觉领域广泛应用。 YOLO,即You Only Look Once,是一个端到端的深度学习框架,它能够直接从原始图像中预测出边界框和类别概率,从而实现对目标的快速检测。YOLO的核心在于它的网络架构,通常包括卷积神经网络(CNN)层,用于特征提取,以及后续的检测层,用于生成边界框和分类得分。 数据集是机器学习和深度学习项目的基础,这个数据集包含1440张图片,每张图片都与相应的txt格式标注文件关联。txt标注文件通常包含了每个目标对象的边界框坐标和类别信息。对于行人跌倒检测,这些标注可能详细指明了跌倒行人的位置、大小以及状态(如跌倒还是站立)。 在YOLOv8这一标签中,我们可以推断这个数据集可能是基于较新的YOLO版本进行训练或测试的。YOLO的每个版本都有其独特的改进和优化,比如更快的速度、更高的精度或者更少的计算资源需求。YOLOv8可能引入了新的网络结构、损失函数或是训练策略,以提高对跌倒行人的识别能力。 至于数据集的使用,通常包括以下几个步骤: 1. 数据预处理:将图片和对应的txt标注文件加载到内存中,可能需要进行归一化、缩放等操作,使其适应模型的输入要求。 2. 划分数据集:将数据集分为训练集、验证集和测试集,用于模型训练、参数调整和性能评估。 3. 模型训练:使用训练集对YOLO模型进行训练,通过反向传播更新权重,以最小化预测结果与实际标注之间的差距。 4. 模型评估:使用验证集监控模型在未见过的数据上的性能,避免过拟合。 5. 超参数调整:根据验证集的表现调整模型的超参数,如学习率、批次大小等。 6. 最终测试:最后在独立的测试集上评估模型的泛化能力,确保模型在新数据上的表现良好。 总结来说,这个数据集是针对行人跌倒检测的,可以用于训练或改进YOLO模型,特别是其最新版本YOLOv8,以提高在现实世界场景中检测跌倒事件的能力。通过合理的数据处理和模型训练,可以构建一个对行人的安全起到预警作用的应用,尤其适用于监控摄像头等安全系统中。
2025-06-24 15:18:11 65.3MB 数据集 yolo
1
《基于YOLOv8的医院病房夜间跌倒预警系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
2025-05-23 14:20:23 24.21MB
1
"基于YOLOv8算法的跌倒检测系统:含完整训练与测试文件、PyQt界面源码及优化路况裂纹数据集",【跌倒检测系统】基于YOLOv8的跌倒检测系统。 包含训练文件,测试文件,pyqt界面源码,路况裂纹数据集,权重文件,以及配置说明。 因代码文件具有可复制性,一经出概不 。 跌倒检测图像数据集。 包含训练图像9444张,验证图像899张,测试图像450张,YOLO格式,带有标注。 ,基于YOLOv8的跌倒检测系统; 训练文件; 测试文件; pyqt界面源码; 路况裂纹数据集; 权重文件; 配置说明; 跌倒检测图像数据集,基于YOLOv8的跌倒检测系统:训练与测试文件全包揽,附PyQt界面源码
2025-05-23 14:12:31 486KB
1
基于YOLOv8的跌倒检测系统:包含全套训练与测试文件及PyQt界面源码的完整解决方案,基于YOLOv8算法的跌倒检测系统:全包型源码及数据集解决方案,【跌倒检测系统】基于YOLOv8的跌倒检测系统。 包含训练文件,测试文件,pyqt界面源码,路况裂纹数据集,权重文件,以及配置说明。 因代码文件具有可复制性,一经出概不 。 跌倒检测图像数据集。 包含训练图像9444张,验证图像899张,测试图像450张,YOLO格式,带有标注。 ,基于YOLOv8的跌倒检测系统; 训练文件; 测试文件; pyqt界面源码; 路况裂纹数据集; 权重文件; 配置说明; 跌倒检测图像数据集,基于YOLOv8的跌倒检测系统:训练与测试文件全包揽,附PyQt界面源码
2025-04-12 20:19:09 493KB gulp
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
"基于智能手机的人体跌倒检测系统" 智能手机的人体跌倒检测系统是一种基于信号向量模和特征量W相结合的跌倒检测算法,利用加速度传感器和陀螺仪监测人体姿态变化,有效减少了跌倒检测结果的假阳性和假阴性。该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。 该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,分别测量三轴方向运动加速度和角速度大小信息。通过使用信号向量模(magnitude of signal vector, SVM)阈值法来识别区分低强度日常生活活动(activities of daily living, ADL)与跌倒,对于阈值法不能识别的较高强度ADL,则通过对角速度信号向量模数据进一步处理得到的新特征量来判别。 信号数据人体活动主要分为以下几种:躺下、步行、坐下—起立、上楼梯、下楼梯、慢跑、蹲下—起立以及跌倒等。智能手机的加速度传感器和陀螺仪输出的信号数据可以反映出人体日常运动姿态变化。 信号向量模(SVM)是跌倒发生时的加速度及角速度变化的主要特征量,可以将空间的加速度或角速度变化集合为一矢量。加速度信号向量模(SVMA)及角速度信号向量模(SVMW)的定义分别如式(1)和式(2)所示。 跌倒检测方法设计中,通过对人体摔倒过程及其它日常生活行为过程中实验结果数据SVMA和SVMW进行分析,识别跌倒的加速度信号向量模阈值取SVMAT =20m/s2 和角速度信号向量模阈值取SVMWT =4rad/s。 然而,慢跑等动作也具有大加速度和角速度峰值的特征,单独的SVM 特征量并不能区分摔倒过程与慢跑或手机日用等较高强度运动过程。因此,本文对角速度信号向量模数据作进一步处理,来寻找新的特征量。定义一个人体跌倒时躯干倾斜的合角度θ,它是通过对角速度信号向量模数据进行积分得到的。 该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,能够有效减少跌倒检测结果的假阳性和假阴性。
2024-11-04 15:47:14 1.12MB 智能手机 人体跌倒 检测系统 技术应用
1
1、yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张;类别名为falling, 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
2024-09-18 14:31:57 782.01MB 数据集
1
目标检测模型,典型代表有YOLO、SSD和Yolo等。这些方法采用基于回归的思想,在输入图像的多个位置直接回归出区域框坐标和物体类别,具有快速的识别速度和与faster R-CNN相当的准确率。本实例项目基与yolov8n-pose预训练模型实现人的站立、跌倒、坐的姿 态估计。
2024-06-13 17:20:50 60.19MB 姿态检测
1
跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据
2024-05-03 14:09:58 289.16MB 数据集 毕业设计
1
心率血氧浓度、人体温度、跌倒检测:人体加速度向量幅值SVM和微分加速度幅值的绝对平均值DSVM是区分人体运动状态的重要参量。SVM通过计算加速度幅度表征人体运动的剧烈程度,其值越大表明运动越剧烈。 当LED光射向皮肤,透过皮肤组织反射回的光被光敏传感器接受并转换成电信号再经过AD转换成数字信号,简化过程:光--> 电 --> 数字信号。 - STM32f103c8t6 - 0.96 oled IIC 模块 - max30100心率血氧模块 - mpu-6050模块 - 人体温度模块
2024-05-02 16:47:32 97.17MB stm32
1