LNS算法求解VRP问题的步骤: 1. 初始化 生成初始解:随机生成一个初始的车辆路径规划方案作为当前解。 2. 大邻域搜索(Destroy过程) 破坏当前解:从当前解中随机选择一部分元素(如客户点、配送点等)进行删除或重新排列,以破坏当前解的结构。破坏的程度和方式可以根据问题特性进行调整,以期在后续修复过程中获得更好的解。 生成候选解:通过破坏操作,生成多个候选解,这些候选解将作为修复过程的起点。 3. 小邻域搜索(Repair过程) 修复候选解:对每个候选解进行修复操作,以生成新的可行解。修复操作可能包括插入被删除的元素、调整元素的顺序等,目的是在保持解可行性的同时,尽量改善解的质量。 评估候选解:计算每个修复后的候选解的目标函数值(如总行驶距离、总成本等),以便后续的选择和更新。 4. 接受或拒绝新解 根据一定的策略(如贪婪策略、模拟退火等),从候选解中选择一个最优的解作为新的当前解。通常,选择目标函数值更优的解,但也可能允许一定程度上的劣化解以避免陷入局 5. 更新 更新当前解和相关参数,如车辆路径、行驶距离、成本等。 6. 判断终止条件,输出结果。
2025-10-29 09:01:43 7KB matlab
1
"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
自动驾驶控制技术:基于车辆运动学模型MPC跟踪仿真的研究与实践——Matlab与Simulink联合仿真应用解析,自动驾驶控制-基于车辆运动学模型MPC跟踪仿真 matlab和simulink联合仿真,基于车辆运动学模型的mpc跟踪圆形轨迹。 可以设置不同车辆起点。 包含圆,直线,双移线三条轨迹 ,核心关键词:自动驾驶控制;MPC跟踪仿真;基于车辆运动学模型;圆形轨迹;Matlab联合仿真;双移线轨迹。,"MATLAB与Simulink联合仿真:基于车辆运动学模型的MPC自动驾驶控制圆形轨迹跟踪"
2025-10-26 21:01:41 286KB
1
基于扩展卡尔曼滤波算法的车辆质量与道路坡度精准估计模型及Matlab Simulink实现,基于扩展卡尔曼滤波算法的车辆质量与道路坡度精确估计模型及应用研究,基于拓展卡尔曼滤波的车辆质量与道路坡度估计 车辆坡度与质量识别模型,基于扩展卡尔曼滤波,估计曲线与实际误差合理。 先用递归最小二乘法(RLS)质量识别,最后利用扩展卡尔曼坡度识别(EKF)。 附带对应文档21f 备Matlab simulink模型 2019以上版本 ,车辆质量估计;道路坡度估计;扩展卡尔曼滤波;递归最小二乘法;Matlab simulink模型,基于扩展卡尔曼滤波的车辆坡度与质量联合估计模型
2025-10-20 22:03:16 2.17MB 哈希算法
1
基于《车辆-轨道耦合动力学》的列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序设计与实现,基于《车辆-轨道耦合动力学》的列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序开发与应用,列车-钢弹簧浮置板-轨道耦合垂向时域程序 根据《车辆-轨道耦合动力学》编写 Matlab代码 注:仅代码,如需,需要有偿询问。 ,关键词:列车;钢弹簧浮置板;轨道耦合;垂向时域程序;《车辆-轨道耦合动力学》;Matlab代码;有偿询问。,列车轨道耦合垂向时域Matlab代码程序 在现代城市交通系统中,列车运行的稳定性和安全性是至关重要的。为了深入研究并优化列车与轨道之间的相互作用,专业技术人员依据《车辆-轨道耦合动力学》的理论基础,开发了列车-钢弹簧浮置板-轨道耦合垂向时域的Matlab程序。这一程序旨在模拟和分析列车在钢弹簧浮置板轨道系统上的动态行为,以便于工程师能够更好地理解和控制列车运行过程中的振动和稳定性问题。 钢弹簧浮置板轨道系统是一种先进的轨道结构设计,通过使用弹簧和浮置板来减少列车运行时产生的噪声和振动,从而提高乘坐舒适性和降低对周围环境的影响。在此系统中,列车与轨道之间的耦合作用非常复杂,需要借助专业的动力学模型和计算软件来进行分析。Matlab作为一种广泛应用于工程计算和仿真领域的软件,提供了一个强大的平台来实现这些复杂的动力学计算。 通过编写Matlab代码,研究者可以构建列车-钢弹簧浮置板-轨道耦合系统的垂向动力学模型,进而研究它们在不同运行条件下的动态响应。这包括对列车经过时轨道系统的动态变形、振动传播以及浮置板系统的隔振性能等方面的研究。这样的研究有助于设计更安全、更高效的轨道系统,同时也有助于制定更为合理的维护和检修策略。 此外,列车与轨道耦合动力学研究中的钢弹簧浮置板研究是一个重要的子领域。通过对浮置板系统的研究,可以深入理解其在减少振动和噪声方面的机理,并评估其在实际应用中的效果。由于涉及到复杂的物理现象和力学响应,此类研究通常需要借助数值仿真手段来进行。 在当前的城市交通系统中,采用钢弹簧浮置板轨道系统能够有效提高城市轨道交通的舒适性和安全性。然而,为了达到最佳的效果,需要不断进行研究和技术创新。Matlab程序的设计与实现为这一过程提供了强有力的工具,有助于工程师们在理论研究和实际工程中找到最佳的解决方案。 需要指出的是,上述Matlab代码程序是根据《车辆-轨道耦合动力学》的相关理论进行编写的。这是一门研究车辆、轨道以及它们之间相互作用的学科,它在轨道交通的设计、分析和运行中扮演着重要的角色。开发者们基于这些理论,将抽象的动力学方程转化为可以在计算机上执行的数值模型,从而实现了对列车运行状态的模拟和预测。这些研究成果可以为轨道交通系统的优化设计提供理论支持和实验数据。 列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序是城市轨道交通领域的一项重要技术成果。它的开发与应用对于提升列车运行的稳定性与安全性、优化轨道结构设计以及提高乘客舒适度都具有重要的意义。而这一切的实现,都离不开专业的《车辆-轨道耦合动力学》理论指导和先进的Matlab仿真技术的支撑。
2025-10-18 11:54:22 96KB
1
带时间窗和容量限制的车辆路径规划(VRPTW)问题及其多种求解方法,如遗传算法、蚁群算法、粒子群算法、节约里程算法及禁忌搜索算法。重点讲解了遗传算法的具体实现步骤,包括主函数骨架、种群初始化、适应度计算、交叉操作等部分。文中提供了完整的MATLAB代码,并对每个模块进行了详细的解释,确保代码的可读性和易修改性。此外,还讨论了惩罚系数的设定以及实际应用中的注意事项。 适合人群:对车辆路径规划感兴趣的科研人员、物流行业从业者、算法开发者及学生。 使用场景及目标:适用于解决物流配送中的路径优化问题,旨在最小化运输成本并满足时间和容量约束。通过学习本文,读者能够掌握VRPTW问题的基本概念和解决方案,进而应用于实际物流调度系统中。 其他说明:本文提供的MATLAB代码可以直接运行,用户可以根据自身需求调整参数和数据集,以适应不同的应用场景。同时,文中提到的一些技巧也可以用于改进现有算法性能。
2025-10-18 09:56:41 667KB
1
内容概要:本文详细介绍了如何使用Matlab构建和仿真车辆行驶控制的运动学模型。首先,通过简化四轮车辆为前后两个虚拟轮子的自行车模型,利用前轮转角δ和前轮转速v作为主要输入,结合轴距L和时间步长dt等参数,实现了车辆在屏幕上的运动仿真。文中提供了完整的Matlab代码示例,包括状态变量初始化、核心运动学微分方程的实现以及主循环中的状态更新和轨迹绘制。此外,还讨论了参数调优的方法及其对仿真结果的影响,并展示了如何通过改变输入信号来重现不同的驾驶场景,如麋鹿测试和8字绕桩等。 适合人群:对车辆运动学感兴趣的学生、研究人员及工程师,尤其是那些希望深入了解车辆控制原理并通过编程进行仿真的读者。 使用场景及目标:①学习和掌握车辆运动学的基本理论和建模方法;②通过实际编码练习加深对运动学方程的理解;③探索不同参数设置对车辆运动轨迹的影响,为进一步研究高级控制算法奠定基础。 其他说明:附带的操作视频可以帮助初学者更好地理解和应用所学内容。建议使用Matlab 2020b及以上版本以确保最佳兼容性。
2025-10-17 15:47:28 264KB
1
内容概要:本文档详细介绍了如何利用MATLAB进行车辆行驶控制运动学模型的建模与仿真。首先解释了二自由度运动学模型的基本原理,包括状态向量和控制量的定义以及运动微分方程的具体形式。接着展示了如何通过欧拉法对连续系统进行离散化处理,并给出了具体的MATLAB代码实现步骤。此外,文中还提供了完整的项目工程源文件、带有中文注释的操作视频教程和仿真效果图。最后讨论了不同条件下(如不同的转向角度和速度)下车辆运动特性的变化规律,并指出当转向角度过大时需要考虑动力学模型来提高准确性。 适合人群:对自动驾驶或机器人导航感兴趣的科研人员、高校师生及工程师。 使用场景及目标:适用于希望深入理解车辆运动控制理论并掌握实际建模技能的学习者;可用于教学演示、实验研究或工程项目开发。 其他说明:文档不仅提供详细的理论推导和技术细节,还包括丰富的实例代码和可视化结果,有助于读者更好地理解和应用相关知识。
2025-10-17 15:46:52 297KB
1
JT/T 808-2011 是中国交通运输行业标准,主要规范了道路运输车辆卫星定位系统车载终端与监管/监控平台之间的通讯协议和数据格式。该标准旨在确保车辆定位系统的有效性和安全性,用于实时监控和管理道路运输车辆。 1. **通讯协议**:JT/T 808-2011 定义了终端与平台间通信的基础框架,包括通信连接、消息处理机制以及协议分类。通信连接部分规定了如何建立和维护无线通信链路,例如通过TCP或UDP协议。消息处理则涉及消息的发送、接收和确认过程,确保数据的完整性和准确性。 2. **数据格式**:标准规定了数据的结构和编码规则,使得平台能够解析和理解终端发送的数据,如车辆的位置、速度、方向等关键信息。数据格式的标准化有助于不同厂商的设备间互操作性和数据一致性。 3. **消息处理**:消息处理包含注册、注销、鉴权等关键操作。注册和注销是终端安装或拆卸时向平台通报的状态变更,鉴权则用于验证终端的身份,确保通信安全。位置汇报策略定义了何时、以何种方式(定时或定距)报告车辆位置。 4. **特殊功能**:标准还涵盖了特定情况下的处理,如拐点补传,即在车辆转弯时增加位置信息汇报的频率,以提高轨迹跟踪的精度。电话接听策略和SMS文本报警则涉及终端的交互功能,确保紧急情况下的通信效率。 5. **事件项**:平台可以设定事件项,如超速、疲劳驾驶等,当这些事件发生时,终端会发送报告至平台,以便进行实时监控和管理。 6. **安全与加密**:虽然标准未详细说明,但通常此类系统会采用安全措施,如RSA等非对称加密算法,来保护数据的机密性和完整性。 7. **兼容性与引用标准**:JT/T 808-2011 引用了其他相关标准,如GB/T 2260的行政区划代码,JT/T 415的道路运输电子政务平台编码规则,以及JT/T 794的车载终端技术要求,确保整个系统的协调性和互操作性。 8. **实施与修订**:该标准于2011年发布并实施,由全国道路运输标准化技术委员会提出,由中国交通通信信息中心等单位起草,并经过一定的修订流程,确保其适应行业的最新发展。 JT/T 808-2011 是一个综合性的标准,它规定了道路运输车辆卫星定位系统的通信规范,促进了车辆监控系统的标准化和效率,为交通安全和管理提供了有力的技术支持。
2025-10-17 13:33:08 720KB 通讯协议
1
内容概要:本文详细介绍了如何利用Python和Carsim进行车辆动力学模型的验证。主要内容包括设置路面附着系数、定义输入函数(如阶跃输入和正弦输入),并编写简化的车辆动力学模型来计算质心侧偏角、横摆角速度和侧向加速度。此外,还讨论了轮胎魔术公式的参数转换方法及其在低附着路面上的应用,以及解决联合仿真中时间同步问题的技术手段。文中强调了参数对齐的重要性,并提供了具体的参数配置示例。为了提高模型精度,提出了改进措施,如采用梯形波代替阶跃输入、引入轮胎动力学延迟模型等。最终,通过比较自建模型与Carsim的仿真结果,评估模型的有效性和准确性。 适合人群:从事车辆工程、自动驾驶技术研发的专业人士,尤其是需要进行车辆动力学建模和仿真的研究人员和技术人员。 使用场景及目标:适用于希望深入了解车辆动力学模型验证流程的研究人员和技术人员。主要目标是在不同路况条件下验证自建模型的可靠性,为后续控制系统开发提供坚实的基础。 其他说明:文中提供的代码片段和方法可以帮助读者更好地理解和应用相关理论,同时提醒了一些常见的错误和注意事项,有助于提高仿真的准确性和稳定性。
2025-10-14 22:29:17 268KB
1