针对中国机器人及人工智能大赛城市道路识别赛项的基于U-Net的车道线检测模型(包含原始图片,打标之后的文件,以及训练结果) 具体使用方法可参考笔者的上一篇博客:基于U-Net的车道线检测模型(中国机器人及人工智能大赛城市道路识别赛项) U-Net是一种流行的深度学习架构,主要用于图像分割任务,特别适合处理具有小数据集的问题。在自动驾驶领域,U-Net模型可以用来进行车道线检测,这一功能对于确保自动驾驶车辆安全、准确地行驶在道路上至关重要。 在中国机器人及人工智能大赛的城市道路识别赛项中,参赛者需设计和训练一个车道线检测模型。U-Net模型由于其结构设计和性能特点,被广泛应用于这一场景。U-Net模型的核心在于其对称的“U”形架构,该结构通过一系列卷积层、池化层和上采样层来捕获图像的上下文信息。模型的编码器部分负责逐步压缩输入图像,提取特征,而解码器部分则逐步恢复图像的空间分辨率,同时在上采样过程中合并特征,生成最终的分割图。 在车道线检测任务中,U-Net模型的训练数据包括原始道路图像以及相应的标记图像。标记图像中,车道线被清晰地标注出来,通常使用二值化或其他方法,以便模型能够学习区分车道线和其他道路表面。训练过程涉及将这些成对的数据输入模型中,通过反向传播算法调整模型参数,最小化预测分割图和标记图之间的差异。 该模型的成功应用不仅取决于其架构,还依赖于训练过程中的数据质量、标注准确性以及超参数的调整。在训练过程中,通常需要对模型进行多次迭代,不断优化以达到最佳性能。一旦训练完成,模型将能够准确地识别新图像中的车道线,为自动驾驶系统提供关键的视觉信息。 此外,U-Net模型的通用性和高效性使其成为处理医学图像分割、卫星图像分析等其他领域图像分割任务的理想选择。其独特的编码器-解码器结构使得它能够处理图像中的局部特征和全局上下文信息,同时保持空间层级结构,这对于精确的图像分割至关重要。 尽管U-Net模型在多个领域显示出强大的潜力,但其性能仍然受限于训练数据的质量和多样性。未来的研究可能会探索如何通过合成数据、数据增强或其他技术来改善模型的鲁棒性和泛化能力,以应对现实世界中各种复杂和不可预测的场景。 U-Net模型作为图像分割任务中的一个重要工具,其在车道线检测方面的应用是自动驾驶技术进步的一个缩影。通过精心设计的网络架构和严格的训练过程,U-Net不仅能够提供高质量的车道线检测结果,还能够为未来的自动驾驶系统集成提供坚实的技术基础。
2025-04-18 09:12:45 821.69MB 自动驾驶 U-net
1
ufldv2_culane_res34_320x1600.onnx 博客地址: https://blog.csdn.net/lw112190/article/details/134159886
2024-11-19 17:26:45 825.52MB 车道线检测
1
ufldv2_tusimple_res34_320x800.onnx 博客地址: https://blog.csdn.net/lw112190/article/details/134159886
2024-11-19 09:51:21 406.17MB 车道线检测 自动驾驶
1
YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)
2024-10-15 22:15:19 229.22MB 目标检测
1
基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大作业设计项目,代码完整下载可用,纯手打高分设计项目,可作为期末大作业和课程设计,小白也可实战。 基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大作业设计项目,代码完整下载可用,纯手打高分设计项目,可作为期末大作业和课程设计,小白也可实战。 基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大作业设计项目,代码完整下载可用,纯手打高分设计项目,可作为期末大作业和课程设计,小白也可实战。 基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大作业设计项目,代码完整下载可用,纯手打高分设计项目,可作为期末大作业和课程设计,小白也可实战。 基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大作业设计项目,代码完整下载可用,纯手打高分设计项目,可作为期末大作业和课程设计,小白也可实战。 基于matlab的车道线检测系统源码+数据(95分以上大作业项目).zip 高分大
2024-06-21 10:46:59 80.14MB matlab 边缘检测 期末大作业
基于Matlab的车道线检测源码+全部数据(期末大作业).zip主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行! 基于Matlab的车道线检测源码+全部数据(期末大作业).zip主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行!基于Matlab的车道线检测源码+全部数据(期末大作业).zip主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行!基于Matlab的车道线检测源码+全部数据(期末大作业).zip主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行!基于Matlab的车道线检测源码+全部数据(期末大作业).zip主要针对计算机相关
2024-06-21 10:45:59 80.14MB matlab 期末大作业 课程设计
基于Matlab的车道线检测.完整代码+数据
2024-06-21 10:25:36 104MB matlab 车道线检测
[有界面]:MATLAB的车道线检测(GUI界面,偏离车道线会进行声音预警,视频检测).zip
2024-01-15 21:23:27 16.95MB matlab 源码 GUI界面 MATLAB设计
1
车辆和车道线检测与跟踪 固态硬盘 Yolo3 神经网络 概述 将车道发现和车辆检测项目结合在一起。 添加汽车类别以跟踪检测到的车辆的位置(边界框)和历史记录。 沿摄像机方向覆盖车道的鸟瞰图的透视变换用于测量摄像机的x和y位移。 给出了使用SSD,Yolo3和Mask R-CNN模型的结果。 以米为单位的相对距离(dx,dy)显示在检测到的汽车的边界框上方。 边界框下方显示了以公里/小时为单位的相对速度(vx,vy)。 视频的左上方还提供了缩略图以及检测到的车辆的距离/速度。 车辆按照边框的大小按降序排序。 数据集 项目数据集由Udacity提供。 它分为和。 该数据集是KITTI视觉基准套件和GTI车辆图像数据库的组合。 GTI车辆图像分为远,左,右,中间关闭。 这些是汽车和非汽车的示例: 奇蒂 GTI远 GTI关闭 GTI左 GTI权利 非汽车1 非汽车2 非汽车3
2024-01-12 15:30:28 472MB Python
1
车道线检测(GUI界面,偏离车道线会进行声音预警,视频检测)
2023-10-19 02:39:36 16.96MB
1