内容概要:本文系统讲解了DDPG(深度确定性策略梯度)强化学习算法的原理、代码实现与实际应用。首先介绍了强化学习的基本概念,包括智能体、环境、状态、动作、奖励和策略等核心要素;随后深入剖析DDPG算法的Actor-Critic架构、确定性策略、经验回放和目标网络四大核心机制,并结合数学公式推导其策略梯度更新、Q值计算和损失函数优化过程;接着使用PyTorch框架在CartPole环境中实现了DDPG算法,涵盖网络定义、训练流程、模型保存与加载;最后通过无人机轨迹优化案例展示了算法的实际应用效果,并分析了训练过程中轨迹演化与奖励变化趋势,总结了DDPG在连续动作空间控制任务中的优势与局限性。; 适合人群:具备一定机器学习基础,对强化学习感兴趣的高校学生、研究人员及从事人工智能、机器人控制、自动驾驶等领域的工程师;尤其适合希望从理论到代码全面掌握DDPG算法的技术人员。; 使用场景及目标:①理解DDPG如何解决连续动作空间下的决策问题;②掌握Actor-Critic架构、目标网络、经验回放在算法中的作用机制;③通过Python代码实现加深对算法流程的理解;④应用于机器人控制、自动驾驶、智能交通等实际场景的策略优化。; 阅读建议:建议读者在学习过程中结合代码实践,使用PyTorch或TensorFlow框架动手实现算法,并在Gym等环境中进行调试与训练,以深入理解各模块功能。同时关注超参数调优策略,提升算法稳定性与性能。
2025-11-24 16:01:01 207KB DDPG 强化学习 Python
1
基于MATLAB的rokae-xmate机械手动态参数识别代码,包括激励轨迹优化、LSM方法和动态方程的N-E公式。_Dynamic parameter identification code for rokae xmate manipulator based on MATLAB, including excitation trajectory optimization, LSM method, and N-E formulation of dynamic equation..zip
2025-09-09 15:24:11 31.97MB
1
内容概要:本文介绍了采用粒子群算法(PSO)对6自由度机械臂轨迹进行优化的方法。首先,利用机械臂的正逆运动学原理获取轨迹插值点;接着,采用3-5-3多项式对轨迹进行插值,确保机械臂能快速平稳地到达目标位置;最后,使用改进的PSO算法对分段多项式插值构造的轨迹进行优化,实现时间最优的轨迹规划。实验结果显示,优化后的轨迹显著提升了机械臂的运动效率和平滑性。 适合人群:从事机器人技术、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要提高机械臂运动效率和平滑性的应用场景,如工业生产线、自动化仓储系统等。目标是通过优化机械臂的运动轨迹,减少运动时间和能耗,提升生产效率。 其他说明:本文提出的方法不仅限于6自由度机械臂,还可以扩展应用于其他类型的机械臂轨迹优化问题。未来的研究方向包括探索更高效的优化算法,以应对更为复杂的机械臂运动轨迹优化挑战。
2025-05-08 09:47:49 1.18MB
1
内容概要:本文针对空中集群网络中面临的两大挑战——UAV(无人驾驶飞行器)任务卸载优化和服务质量保障——进行了深入探讨并提出了两种关键机制。(1)基于动态任务负载和无人机(UAV)路径规划优化的计算任务卸载策略,它考虑了UAV位置和运动预测因素来决定何时何地执行计算任务,以便最大限度地减少资源浪费与数据传输延迟;(2)基于不同时间段变化特性设计的大时间尺度和小时间尺度下灵活高效的网络切片资源共享框架,用以维持系统稳定运行及提高整体效能。 适合人群:对于有兴趣研究或者从事无人机动态网络管理和通信优化的技术专家,以及想要进一步探索该前沿课题的学生群体。 使用场景及目标:适用于希望增强无线通信网性能、改善资源利用情况的场景;其主要目的在于降低空中集群系统的通信成本同时提升响应速度和服务水平。 阅读建议:重点在于理解如何应用提出的机制解决实际问题。注意跟随文章脉络,先从理论上把握新方法的设计思路,再看实验部分验证这些想法的有效性和实用性,最好能复现实验以加深理解和掌握关键技术要点。
2025-05-05 21:41:03 153KB 无线通信 计算机网络
1
内容概要:本文基于ROS(机器人操作系统)搭建了6自由度机械臂的运动轨迹规划仿真平台。首先利用SolidWorks建立机械臂模型,并通过SW2URDF插件生成URDF文件,完成机器人模型的描述。接着,利用Moveit!的设置助手完成运动规划相关文件的配置,在三维可视化平台Rviz中实现了笛卡尔空间的直线与圆弧插补。路径规划方面,采用RRT(快速扩展随机树)和RRTConnect算法,完成了高维空间和复杂约束下的无碰撞路径规划。仿真结果显示,RRTConnect算法收
1
非线性模型预测控制(NMPC)原理详解及四大案例实践:自动泊车、倒立摆上翻、车辆轨迹跟踪与四旋翼无人机应用,nmpc非线性模型预测控制从原理到代码实践 含4个案例 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。 ,nmpc非线性模型预测控制; 原理; 代码实践; 案例; 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。,"NMPC非线性模型预测控制:原理与代码实践,四案例详解自动泊车、倒立摆、车辆轨迹跟踪与四旋翼无人机控制"
2025-04-07 22:55:22 442KB
1
基于Matlab的局部路径规划算法研究:结合阿克曼转向系统与DWA算法的车辆轨迹优化与展示,动态、静态障碍物局部路径规划(matlab) 自动驾驶 阿克曼转向系统 考虑车辆的运动学、几何学约束 DWA算法一般用于局部路径规划,该算法在速度空间内采样线速度和角速度,并根据车辆的运动学模型预测其下一时间间隔的轨迹。 对待评价轨迹进行评分,从而获得更加安全、平滑的最优局部路径。 本代码可实时展示DWA算法规划过程中车辆备选轨迹的曲线、运动轨迹等,具有较好的可学性,移植性。 代码清楚简洁,方便更改使用 可在此基础上进行算法的优化。 ,动态障碍物; 静态障碍物; 局部路径规划; MATLAB; 自动驾驶; 阿克曼转向系统; 车辆运动学约束; 几何学约束; DWA算法; 轨迹评分; 实时展示; 代码简洁。,基于DWA算法的自动驾驶局部路径规划与车辆运动学约束处理(Matlab实现)
2025-03-31 22:32:23 132KB 哈希算法
1
这是作者花了很多心血编译并封装的高斯伪谱算法等一系列最优控制算法的封装库,可以求解各种轨迹优化问题。项目主要基于Lpopc进行封装,并提供了visual studio demo项目供学习。通过ElegantGP(该库名称),您可以构建各种复杂最优控制问题并求解。它所依赖的arma和MKL我也都打包在了这个库中,您无需为依赖问题而烦恼。C++求解高斯伪谱算法,从现在开始将不再困难!
2024-05-16 18:01:59 431.14MB 最优控制 轨迹优化
非常强大的运用伪谱法求解系统轨迹优化的工具,需要在matlab环境下运行,具体使用方法可以百度学习
2023-05-28 05:30:55 3.23MB 轨迹优化
1
研究高尔夫球在任何 3D 表面上弹跳和滑动的动力学。 使用遗传算法的轨迹优化。 有关更多信息,请参阅 github。
2023-02-21 10:09:07 2.29MB matlab
1