数据集介绍 简述 本数据集提供了仿真人体漂流坐标、海洋环境要素等数据信息。可以基于此建立落水人员漂移预测模型,尽可能准确的预测落水人员的漂流轨迹,可以最大程度减小搜寻区域的大小,减少搜救力量的投入,提高海上搜救的成功率,有效保障海上生产活动的安全。 数据描述 数据介绍 在茫茫大海上进行落水物体、人员的搜寻是一件极其困难且投入与期待结果严重不成比例也无法预期的工作。随着互联网技术的发展,大数据技术的普及以及AIS信息化系统的广泛应用,如何利用落水人员漂流轨迹预测以及互联网技术来进行海上落水人员的联合搜救是极具现实价值的研究课题。 内容范围 数据包括两部分,一是将仿真人体模型在指定位置抛放,通过仿真人体模型上的GPS/北斗定位模块进行实时定位,记录仿真人体模型的实际漂移轨迹;二是部分NC格式的洋流数据跟气象数据。(洋流与气象的原始数据过多,这里仅提供20200908-20200911期间的数据)
2025-10-15 08:25:56 152.14MB 数据集
1
近年来,随着自动驾驶技术的快速发展,对车辆行为理解的准确性提出了更高的要求。其中,车辆换道行为作为道路交通中常见的复杂动态行为,成为了研究的热点。基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,结合了图卷积网络(GCN)和Transformer模型的优势,提出了一种新颖的解决方案,旨在提高预测的准确性和实时性。 图卷积网络(GCN)在处理非欧几里得数据方面表现卓越,尤其适合处理图结构数据。在车辆换道行为建模中,GCN可以有效地捕捉车辆与周围车辆之间的空间关系和交互作用。通过图结构表示交通网络,GCN能够对车辆之间的相对位置、速度和加速度等动态特征进行编码,从而学习到车辆行为的局部特征表示。 Transformer模型最初被设计用于自然语言处理(NLP)领域,尤其是序列到序列的学习任务。Transformer的核心在于自注意力(Self-Attention)机制,该机制能够让模型在处理序列数据时,考虑到序列内各元素之间的长距离依赖关系,这对于序列预测问题来说至关重要。在车辆换道预测任务中,Transformer可以帮助模型捕捉时间序列上的特征,如车辆的历史轨迹、速度变化趋势等,从而生成更准确的未来轨迹预测。 结合GCN和Transformer,研究人员提出了多种方法来优化车辆换道行为的建模与轨迹预测。一种常见的方法是将GCN用于构建车辆之间相互作用的图结构,然后利用Transformer来处理时间序列数据。GCN负责编码车辆之间的空间关系,而Transformer则关注于时间序列的动态变化。此外,研究人员还可能引入注意力机制来进一步优化模型的性能,使得模型在预测时更加关注与换道行为相关的车辆和其他环境因素。 在实际应用中,基于GCN-Transformer的模型能够为车辆提供连续的轨迹预测,这对于提高自动驾驶系统的决策能力至关重要。通过提前预知周围车辆的潜在换道行为,自动驾驶车辆可以更好地规划自己的行驶路线和行为,从而提高道路安全性和交通流的效率。 此外,基于GCN-Transformer的模型在处理大规模交通场景时表现出色。大规模交通网络中包含成千上万辆车,这些车辆的轨迹和行为相互影响,形成复杂的动态系统。GCN能够有效地处理这种大规模网络中的信息,而Transformer则保证了对长时间序列的分析能力。因此,该方法对于理解和预测复杂交通场景中的车辆行为具有重要的应用价值。 基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,通过结合空间关系建模能力和时间序列分析能力,为车辆换道预测提供了一种强大的技术手段。这种技术不仅能够提升自动驾驶系统的性能,还能在智能交通管理和城市规划等领域发挥重要作用。
2025-09-16 19:38:54 3.62MB
1
LOKI:智能体轨迹和意图预测的大规模数据集及模型评估 LOKI 数据集是为了解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题而提出的。该数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 智能体轨迹预测是自动驾驶环境中的一项关键任务。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据集是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。为此,我们提出了 LOKI 数据集,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。 轨迹预测的最新进展表明,对智能体意图的明确推理是重要的来准确预测它们的运动。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据集是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。 为此,我们提出了 LOKI 数据集,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。LOKI 数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们的模型是基于轨迹预测和意图预测的联合模型,我们的方法优于国家的最先进的轨迹预测方法高达 27%,也提供了一个基线帧明智的意图估计。我们的方法可以更好地理解智能体的长期目标和短期意图,从而提高轨迹预测的精度。 在过去的几年中,已经有广泛的研究来预测场景中的动态代理的未来轨迹,例如行人和车辆。这对于诸如自主车辆或社交机器人导航之类的安全关键应用来说是一项非常重要且具有挑战性的任务。虽然这些方法在最近几年有了显著的进步,但很少有基准测试专门测试这些模型是否能够准确地推理出关键。 人类行为作为目标导向实体的研究在心理学、神经科学和计算机视觉的子领域中具有悠久而丰富的跨学科历史。人类决策过程本质上是分层的,由几个层次的推理和规划机制组成,这些机制协同工作,以实现各自的短期和长期愿望。最近的研究表明,明确地推理长期目标和短期意图可以帮助实现目标。 在这项工作中,我们建议将异构(车辆,行人等)的任务。多智能体轨迹预测和意图预测。我们认为,明确地推理智能体的长期目标和短期意图是在我们的工作中,我们将目标定义为智能体在给定预测范围内想要达到的最终位置,而意图是指智能体如何实现其目标。 例如,考虑十字路口处的车辆。在最高层次上,说他们想达到他们的最终目标,向左转到他们的最终目标点,这反过来可能是一些更高层次的结束(如回家)所必需的。然而,其轨迹的精确运动受许多因素的影响,包括 i)代理人自己的意愿,ii)社会交互,iii)环境约束,iv)上下文线索。 因此,当推理智能体我们相信,这种复杂的短期意图和长期目标的层次结构是无处不在的,事实上,至关重要的,代理运动规划,因此扩展,运动预测。我们提出了一种架构,其考虑类似于 [9,5,3,4] 的长期目标,但添加了用于调节轨迹预测模块的逐帧意图估计的关键组件。通过强制模型学习代理的离散短期意图,我们观察到预测模块的性能提高。 同样丰富成功的是使用数据集对计算机视觉进行基准测试的当代历史在 MNIST [11] 和 ImageNet [12] 等基准测试等开创性工作的指导下,基准测试进展和从数据中学习在现代深度学习的成功中发挥了关键作用。目前,不存在允许在高度复杂的环境中对异构代理进行明确的逐帧意图预测的公共数据集。尽管很少有数据集被设计用于从自我中心的角度研究行人的意图或行为 [13,7,6,14],但这是对自动驾驶任务的广泛研究的固有限制。 因此,我们提出了一个联合轨迹和意图预测数据集,该数据集包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据集允许对代理的未来意图进行显式建模它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们表明,通过建模的短期意图和长期目标与明确的监督,通过意图标签,可以实现更好的轨迹预测精度。此外,在每一帧预测一个特定的意图为我们的模型增强了模型的泛化能力和鲁棒性。
2025-09-11 19:38:17 1.86MB 轨迹预测
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-10 15:47:32 3.54MB matlab
1
基于深度学习的乒乓球目标检测与旋转球轨迹预测.pptx
2024-05-08 09:18:26 908KB
1
仿真了扩展卡尔曼滤波在轨迹预测中的应用,成功预测了匀速直线运动的3维轨迹并做了误差分析,如需相关定位,跟踪代码代做或相关毕设可联系xdmsj8,标注来意
2024-04-10 21:13:49 2KB matlab kalman滤波
1
基于LightGBM进行海洋轨迹预测.zip
2023-11-06 15:27:52 151.91MB 机器学习
1
pytorch实现基于LSTM的高速公路车辆轨迹预测源码+数据集.zip 第1步:轨迹数据滤波,将原始US101和I-80的原始数据放入下图文件夹,运行代码"trajectory_denoise.py",结果如下: image 第2步:移除不必要特征以及添加新特征,运行代码"preprocess.py",结果如下: image 第3步:根据需要添加横、纵向速度和加速度特征,运行代码"add_v_a.py",结果如下: image 第4步:按照滑动窗口法提取所需8s轨迹序列,运行代码"final_DP.py",结果如下: image 第5步:最终合并US101和I-80数据集,为保证数据的均衡性以及充分利用数据集,随机采样10组数据集,每组按照6:2:2的比例划分训练集、测试集和验证集;运行代码"merge_data.py". 模型训练及测试 MTF-LSTM模型训练,运行代码"MTF-LSTM.py" MTF-LSTM-SP模型训练,运行代码"MTF-LSTM-SP.py" 本文训练好的MTF-LSTM和MTF-LSTM-SP模型保存在文件夹/algorithm
【预测模型】卡尔曼滤波运动轨迹预测【含Matlab源码 590期】.zip
2023-03-13 12:49:18 94KB
1
LaneGCN源码分享
2023-02-14 16:42:13 18.67MB 轨迹预测 gcn 源码
1