软件缺陷预测技术对于确保软件产品的可靠性以及降低软件开发和维护成本具有重要作用。传统的软件缺陷预测方法依赖于软件度量元信息,如代码行数、控制流圈复杂度等,来构建机器学习模型进行缺陷预测。然而,这种方法存在明显的不足,因为它无法充分捕捉软件的语法结构信息和语义信息,导致缺陷预测准确性受限。 为了解决这一问题,本文提出了一种基于程序语义和长短期记忆网络(LSTM)的软件缺陷预测模型,简称为Seml。Seml模型采用深度学习技术来学习程序的语义信息,并用以预测程序中可能出现的缺陷。该模型的一个关键特点是,将程序源码中抽取的token转换成分布式向量表示,这样做能更好地表达代码的语义信息,从而有助于提升软件缺陷预测的准确率。 Seml模型在公开数据集PROMISE上进行的实验结果表明,其在项目内缺陷预测和跨项目缺陷预测方面的准确率均高于现有的基于深度学习的方法以及基于度量元的方法。这表明,Seml模型在捕获程序的语义信息方面更具优势,能够更准确地预测软件缺陷。 在讨论Seml模型的过程中,文章还提到了词嵌入技术。词嵌入是一种将词语映射到实数向量的技术,它使得相似的词语在向量空间中也具有相似的距离。这种方法在处理自然语言处理(NLP)任务中十分常见,而在软件缺陷预测模型中使用词嵌入技术,是为了更有效地处理程序源码中的token,从而更好地捕捉代码的语义信息。 此外,文章还提到了其他一些关键点。比如,软件早期的缺陷预测技术通常利用软件模块及其标签(有缺陷/无缺陷)来构建机器学习模型,并利用构建好的模型预测新模块是否含有缺陷。而大多数现有工作都利用了人工设计的度量元作为特征,例如Halstead特征、McCabe特征、CK特征、Mood特征等。这些特征虽然在一定程度上有助于软件缺陷预测,但仍然无法充分捕捉程序的语义信息。 作者在文献中引用了Wang等人提出的一种基于深度学习的缺陷预测方法,该方法使用了深度信念网络(DBN)来处理从程序源码中抽取的序列,并从中学习程序语义信息。尽管实验结果表明这种方法能够取得比传统方法更高的F1值,但其存在的问题是DBN在处理大规模数据时的效率和准确性。 从这些讨论中我们可以看出,Seml模型的核心优势在于其能够通过深度学习和词嵌入技术,更好地捕捉和表达程序的语义信息。这对于提升软件缺陷预测的准确性和效率至关重要。通过这一点,Seml模型有望在软件工程领域产生积极的影响,为开发者提供更加强大和精确的工具,以辅助他们在软件开发过程中及时发现潜在的缺陷,从而进一步提高软件质量和可靠性。
2025-06-23 15:20:37 505KB 计算机应用技术
1
基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料
对跨项目缺陷预测问题展开了深入研究,在源项目实例选择时,考虑了三种不同的实例相似度计算方法,并发现这些方法的缺陷预测结果存在多样性,因此提出了一种基于Box-Cox转换的集成跨项目软件缺陷预测方法BCEL。具体来说,基于不同的实例相似度计算方法,从候选集中选出不同的训练集;针对这些数据集,进行有针对性的Box-Cox转换,并借助特定分类方法构造出不同的基分类器,最后将这三个基分类器进行有效集成。基于实际项目的数据集,验证了BCEL方法的有效性,并深入分析了BCEL方法内的影响因素对缺陷预测性能的影响。
1
1、NASA MDP 软件缺陷数据集介绍:软件缺陷预测研究中心广泛应用NASA公布的NASA IV&V Facility Metrics Data Program(MDP)数据集。 MDP包括 13个不同的数据集,这些数据均来自NASA 的13个实际软件项目,由最常见的开发语言编写。每个数据集包含来自不同软件项目的若干模块,规模从 125个模块到 17186 个模块不等。各个数据集由LOC、McCabe、Halstead等几类度量元属性和是否包含缺陷的类别标记(defective)组成。MDP数据集所提供的记录,一行代表一个模块,每个字段对应一个属性。 2、NASA MDP 数据集是软件缺陷预测使用的数据集; 3、该数据集是向官方索取的,包含13个数据集文件,用于实验研究; 4、数据集文件格式是arff格式。
2022-04-17 12:00:21 788KB 软件缺陷预测 软件安全 机器学习
基于特征选择的软件缺陷预测方法.pdf
2022-04-06 00:22:59 1.01MB 技术文档
基于遗传优化支持向量机的软件缺陷预测模型,王男帅,薛静锋,有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(support vector machine, SVM)具有非线性运算能力,是建立�
2022-02-22 11:17:06 332KB 软件安全
1
软件缺陷预测综述,张启航,武斌,软件缺陷预测是软件工程领域一个重要的问题,其结合人工智能方法对代码是否含有缺陷进行快速判断,提升了软件开发的效率和软件的
2021-10-08 23:29:15 440KB 首发论文
1
基于卷积神经网络的代价敏感软件缺陷预测模型.pdf
2021-09-25 22:05:44 1.48MB 神经网络 深度学习 机器学习 数据建模
包括15个项目的CK数据集,包括15个项目的CK数据集包括15个项目的CK数据集包括15个项目的CK数据集
2021-07-06 07:51:51 174KB dataset of software defect
1
文档总结了常见的软件缺陷预测技术。 软件缺陷预测技术可以分为静态预测技术和动态预测技术两种。其中静态 预测技术是通过对软件以及相关开发环境、从业人员等属性的量化分析来预测软件缺陷的分布情况;动态预测技术则是通过对软件缺陷出现时间进行分析,总结软件缺陷与出现时间之间的关联关系并将其应用于软件缺陷预测的一种技术。由于具体实施方法和理论依据的多样化,使这两种技术都有很多分支,以应对不同类型的软件缺陷预测问题。
2021-05-19 14:02:01 119KB 软件 缺陷 预测
1