内容概要:本文详细介绍了如何利用MATLAB实现滚动轴承故障诊断。主要采用变分模态分解(VMD)对振动信号进行处理,将其分解为多个本征模态函数(IMF),并通过计算各IMF的峭度来识别潜在的故障特征。文中不仅解释了VMD的基本原理及其相对于传统方法的优势,还给出了具体的MATLAB代码实现,包括参数设置、信号分解以及峭度计算的具体步骤。 适合人群:机械工程领域的研究人员和技术人员,尤其是那些从事设备维护、故障检测工作的专业人员。 使用场景及目标:适用于需要对机械设备特别是旋转机械如电机、风机等进行状态监测和故障预测的情景。目的是为了能够及时发现早期故障迹象,减少非计划停机时间,延长设备使用寿命。 其他说明:虽然本文重点在于理论讲解和代码实现,但强调了实际应用中还需结合更多高级的数据分析技术和机器学习模型以提升诊断效果。
2025-06-18 10:49:16 321KB
1
内容概要:本文档详细介绍了基于SABO-VMD-SVM的轴承故障诊断项目,旨在通过融合自适应块优化(SABO)、变分模式分解(VMD)和支持向量机(SVM)三种技术,构建一个高效、准确的故障诊断系统。项目背景强调了轴承故障诊断的重要性,特别是在现代制造业和能源产业中。文档详细描述了项目的目标、面临的挑战、创新点以及具体实施步骤,包括信号采集与预处理、VMD信号分解、SABO优化VMD参数、特征提取与选择、SVM分类和最终的故障诊断输出。此外,文档还展示了模型性能对比的效果预测图,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,特别是对MATLAB有一定了解的研发人员或工程师,以及从事机械设备维护和故障诊断工作的技术人员。 使用场景及目标:①适用于需要对机械设备进行实时监测和故障预测的场景,如制造业、能源行业、交通运输、航天航空等;②目标是提高故障诊断的准确性,减少设备停机时间,降低维修成本,确保生产过程的安全性和稳定性。 阅读建议:由于项目涉及多步骤的技术实现和算法优化,建议读者在学习过程中结合理论知识与实际代码,逐步理解和实践每个环节,同时关注模型性能优化和实际应用场景的适配。
2025-06-02 14:49:27 36KB MATLAB VMD 轴承故障诊断
1
滚动轴承是机械设备中的关键部件,其健康状态直接影响设备的运行效率和可靠性。当轴承出现故障时,必须及时诊断并采取修复措施,以避免更大的损失。本讲稿关注的是利用MATLAB进行滚动轴承故障诊断的方法。 确定轴承的故障特征频率至关重要。在案例中,轴承型号为6205-2RS JEM SKF,转速为1797rpm,滚珠个数为9,滚动体直径为7.938mm,轴承节径为39mm,接触角为0。根据这些参数,可以计算出外圈、内圈、滚动体以及保持架外圈的故障特征频率,分别为107.34Hz、162.21Hz、70.53Hz和11.92Hz。 接着,对轴承故障数据进行时域波形分析。通过导入MATLAB中的Test2.mat数据,进行快速傅里叶变换(FFT)得到时域图,并计算出时域信号的特征值,如有效值、峰值、峰值因子、峭度、脉冲因子和裕度因子。这些特征值有助于理解信号的基本性质和异常程度。 然后,进行了包络谱分析。通过对信号应用经验模态分解(EMD),得到9个内在模态函数(IMF)和一个残余量。通过与原信号的相关性分析,选择相关系数最大的IMF1进行希尔伯特变换,得到的包络谱揭示了故障信息。在包络谱图中,前三个峰值频率58.59Hz、105.5Hz、164.1Hz与理论计算的特征频率相对比,表明故障可能发生在内圈。 MATLAB程序1展示了如何进行原始信号的时域分析和小波去噪处理。通过ddencmp和wdencmp函数,可以有效地去除噪声,使信号更清晰。程序2则演示了EMD分解和Hilbert包络谱的计算过程,通过emd函数分解信号,计算峭度,并使用emd_visu函数可视化结果。 滚动轴承故障诊断通常包括参数计算、时域分析、频域分析以及高级信号处理技术的应用,如EMD和希尔伯特变换。MATLAB作为强大的数据分析工具,对于这类问题提供了强大的支持,能够帮助工程师准确识别轴承的故障模式,从而及时采取维护措施。
2025-05-28 13:38:25 271KB matlab
1
该数据集和完整代码主要实现《神经网络 | 基于多种神经网络模型的轴承故障检测》,适用于正在学习深度学习、神经网络以及计算机、机械自动化等相关专业的伙伴们。在轴承故障诊中,研究基于已知轴承状态的振动信号样本来分析数据并建立轴承故障诊断模型预测未知状态的振动信号样本并判断该样本属于哪种状态十分重要。 资源中的神经网络模型可能仍不够完善,大家可以继续修改完善,不断研究其他的内容。感谢大家的支持和交流,你们的支持也是我前进的十足动力!
2025-05-23 14:39:33 9.2MB 神经网络 数据集
1
内容概要:本文详细介绍了基于Transformer的轴承故障诊断项目的实现过程。首先,使用凯斯西储大学提供的经典轴承数据集进行预处理,将振动信号转换为适用于模型的numpy格式。接着,构建了一个轻量级的Transformer模型,通过卷积层提取局部特征并利用Transformer捕捉长距离依赖。训练过程中采用了动态学习率调整、梯度裁剪等技术确保模型稳定收敛。最终,模型在测试集上达到了98%以上的准确率,并展示了详细的混淆矩阵和损失曲线。此外,还提供了多种优化建议,如数据增强、频谱增强以及使用Focal Loss处理类别不平衡等问题。 适合人群:具备一定机器学习基础,特别是对深度学习和时间序列分析感兴趣的工程师和技术研究人员。 使用场景及目标:①用于工业设备维护中的轴承故障预测;②研究如何应用Transformer模型解决非自然语言处理领域的任务;③探索振动信号处理的新方法。 其他说明:附带完整的代码实现和实验结果图表,便于读者快速上手并进行进一步的研究和优化。
2025-05-18 10:33:19 793KB
1
基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型 基于GADF+Transformer的轴承故障诊断模型,附说明文件及相关lunwen,代码一定能跑通,有格拉姆角场GADF,小波变DWT还有短时傅立叶变STFT多种转二维图像的方式 ,核心关键词: GADF+Swin-CNN-GAM; 轴承故障诊断模型; 格拉姆角场GADF; 代码运行无误; DWT小波变换; STFT短时傅立叶变换。,基于多模态图像处理的轴承故障诊断模型 轴承作为旋转机械中最为关键的部件之一,其运行状态直接关系到整个设备的性能与寿命。随着工业的发展,对于轴承的健康状况进行实时监测和故障诊断变得越来越重要。本文介绍了一种基于高创新诊断技术的轴承故障诊断模型,该模型利用了格拉姆角场(GADF)、Swin-CNN-GAM模型以及多种图像处理方法,以提高故障诊断的准确性和效率。 格拉姆角场(GADF)是一种创新的信号处理技术,它可以有效地提取信号的特征信息,尤其适用于非线性、非平稳的时间序列分析。在轴承故障诊断中,GADF能够帮助分析轴承在运行过程中的振动信号,从而识别出潜在的故障模式。 Swin-CNN-GAM模型是深度学习中的一个重要分支,它结合了变换器(Transformer)架构和卷积神经网络(CNN)以及注意力机制(Attention Mechanism)。在轴承故障诊断中,Swin-CNN-GAM模型通过学习振动信号的时空特征,可以准确地分类和识别轴承的不同故障状态。 此外,模型还集成了多种图像处理技术,包括离散小波变换(DWT)和短时傅立叶变换(STFT)。DWT能够将信号分解为不同的频率组件,使信号在不同尺度上的特征更加明显,适合处理非平稳信号。STFT则将信号转换为时间-频率表示形式,便于分析信号在特定时间段内的频率内容。这些图像处理技术将一维的时间序列信号转换为二维图像,进一步增强了故障诊断模型的性能。 在实际应用中,该模型附带的说明文件和相关论文(lunwen)为使用者提供了详细的理论基础和实验指导,而保证代码能够运行无误,则为用户在实际操作中降低了技术门槛。通过这些丰富的学习材料和工具,即使是不具备深度背景知识的工程师也能够快速理解和应用该诊断模型。 该诊断模型的创新之处不仅在于其技术的多样性,还在于其能够将多个数据源和处理方法融合在一起,以更全面的视角诊断轴承故障。模型的应用前景广泛,对于提高工业设备的运行效率和可靠性具有重要意义。 该高创新轴承故障诊断模型通过集成多种先进技术,提供了从信号分析到故障识别的完整解决方案。它不仅增强了诊断的准确性,而且简化了应用流程,对于维护工业设备的健康状态具有重要的实际价值。
2025-05-06 21:23:31 3.37MB
1
马尔可夫转移场:一维时序信号至二维图像的转换与故障识别分类技术,马尔可夫转移场,将一维时序信号变为二维图像,而后便于使用各种图像分类的先进技术。 适用于轴承故障信号转化,电能质量扰动识别,对一维时序信号进行变,以便后续故障识别识别 诊断 分类等。 直接替数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。 程序内有详细注释,便于理解程序运行。 只程序 ,马尔可夫转移场; 一维时序信号变换; 二维图像转换; 图像分类技术; 轴承故障信号转化; 电能质量扰动识别; EXCEL表格导入; 程序内详细注释。,基于马尔可夫转移场的时序信号二维化处理程序
2025-04-30 21:30:38 151KB
1
内容概要:本文详细介绍了利用MATLAB进行滚动轴承故障诊断的方法,主要采用了变分模态分解(VMD)算法与包络谱分析相结合的技术手段。首先,通过对西储大学提供的标准轴承数据进行预处理,设定适当的采样频率和VMD参数(如K值和alpha值),将复杂的振动信号分解为多个本征模态分量(IMF)。接着,选择合适的IMF分量进行希尔伯特变换并计算其包络谱,从而识别出潜在的故障特征频率。最后,通过比较理论计算的故障特征频率与实际测量所得的频谱峰值来确定具体的故障类型。 适合人群:从事机械设备维护、故障检测以及相关研究领域的工程师和技术人员。 使用场景及目标:适用于工业生产环境中对旋转机械特别是滚动轴承的健康监测和故障预警。能够帮助技术人员快速定位故障源,减少非计划停机时间,提高设备运行效率。 其他说明:文中还提供了详细的代码实例和参数调整建议,便于读者理解和应用。同时强调了一些常见的注意事项,如避免过度分解、正确设置采样频率等,确保诊断结果的有效性和可靠性。
2025-04-16 17:39:50 390KB
1
支持向量机(Support Vector Machine, SVM)是一种监督学习模型,尤其在模式识别和回归分析领域表现出色。在本主题中,"SVM识别基于SVM的滚动轴承故障状态识别方法",我们主要探讨如何利用SVM技术来诊断滚动轴承的健康状况。 滚动轴承是机械设备中的关键组件,其故障可能导致设备性能下降甚至严重损坏。因此,早期发现并识别滚动轴承的故障状态至关重要。SVM通过构建最优分类超平面,能够有效地处理小样本、非线性和高维数据,这使得它成为滚动轴承故障识别的理想工具。 在实际应用中,首先需要收集滚动轴承的振动信号数据。这些数据通常由传感器捕获,包含了轴承的状态信息。然后,通过预处理步骤(如滤波、降噪和特征提取)将原始信号转化为可用于分析的特征向量。常用的特征包括时域特征(如均值、方差、峭度等)、频域特征(如峰值、能量谱、峭度谱等)以及时间-频率域特征(如小波分析或短时傅里叶变换)。 接下来,我们将这些特征向量输入到SVM模型中进行训练。SVM的核心在于寻找最大边距的分类边界,即最大化正常状态与故障状态样本之间的间隔。这个过程涉及到选择合适的核函数,例如线性核、多项式核、高斯核(RBF)等。RBF核通常在非线性问题中表现优秀,适合复杂的故障模式识别。 在训练完成后,我们可以用该模型对新的振动信号进行预测,判断滚动轴承是否处于故障状态。为了评估模型的性能,通常会采用交叉验证、混淆矩阵、准确率、召回率、F1分数等指标。此外,针对多类故障识别,可能还需要采用一对多或多对多的策略。 MATLAB是一个广泛用于SVM建模的平台,提供了完善的工具箱和函数支持。用户可以通过调用`svmtrain`和`svmpredict`函数实现SVM的训练和预测。在文件"5.6SVM"中,可能包含了使用MATLAB实现SVM滚动轴承故障识别的代码示例、数据集以及结果分析。 基于SVM的滚动轴承故障状态识别方法通过高效的数据处理和模式识别,为机械系统的健康管理提供了一种有效手段。它不仅可以预防不必要的停机和维修成本,还能提高整体设备的可靠性和生产效率。随着深度学习和大数据技术的发展,SVM与其他先进技术的结合有望进一步提升故障识别的精度和实时性。
2025-04-16 15:55:11 53.9MB 支持向量机 故障识别 滚动轴承
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-23 13:00:58 7.58MB matlab
1