内容概要:该文档详细介绍了如何在MATLAB环境中实现使用贝叶斯优化方法训练多层感知机(BO-MLP)完成从多输入到单输出回归预测的工作流。整个流程涵盖了准备合成数据集、建立和训练BO-MLP模型、利用模型对新样本点做出预报以及评估预报准确度,最后还展示了预报效果对比的可视化图形。 适合人群:适用于希望借助于MATLAB工具箱从事机器学习研究尤其是专注于非线性回帰问题解决的数据科学家和工程师。 使用场景及目标:帮助研究人员能够自行搭建BO-MLP神经网络架构,并运用自动超参数寻优手段优化网络配置;旨在提升面对具体应用场景时复杂回归任务的处理能力和泛化能力。 其他说明:文中不仅提供了完整的代码样例和相应的解释说明,而且包含了所有所需的数据准备工作段落,在此基础上读者可根据自己的实际问题灵活调整各组件的具体实现细节来达到更好的应用效果。
1
(KELM+SHAP)基于核极限学习机的数据多输入单输出+SHAP可解释性分析的回归预测模型 1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。​ 2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。其核心思想是将模型预测值分解为每个特征的贡献之和,通过计算特征加入模型时对预测结果的边际贡献,量化各特征对最终决策的影响程度。这种方法不仅能够揭示模型对单一样本的决策逻辑,还可以从整体层面分析模型对不同特征的依赖模式,识别出被过度依赖或忽略的关键特征。​ 3、相较于传统机理模型受困于各种复杂力学方程,难以平衡预测精度与可解释性的局限,采用机器学习和与 SHAP 的混合建模框架,实现了预测性能与解释能力的有机统一。该框架在保障回归模型高精度预测的同时,利用 SHAP 的特征贡献分析能力,将模型的决策过程以直观且符合数学逻辑的方式呈现,为模型优化与决策支持提供了重要依据,有望在多领域复杂系统建模中发挥关键作用。 代码解释: 1.本程序数据采用FO工艺数据库,输入特征为:涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。 2.无需更改代码替换数据集即可运行!!!数据格式为excel! 注: 1️⃣、运行环境要求MATLAB版本为2018b及其以上【没有我赠送】 2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3️⃣、代码中文注释清晰,质量极高 4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即
2025-08-12 11:26:09 24KB SHAP KELM
1
内容概要:本文档详细介绍了使用Python实现遗传算法(GA)优化BP神经网络的多输入多输出项目实例。文档首先阐述了项目背景,指出传统BP神经网络存在的局限性,如易陷入局部最优和收敛速度慢等问题,并提出通过遗传算法优化BP神经网络来克服这些问题。项目的主要目标包括优化网络权值、自动设计网络结构、提高泛化能力和适应多种应用场景。文中还讨论了项目面临的挑战,如计算复杂度高、参数选择困难等,并提出了相应的解决方案。此外,文档详细描述了项目的模型架构,包括数据预处理模块、BP神经网络模块、遗传算法模块、优化与训练模块以及预测与评估模块。最后,通过效果预测图展示了优化后的BP神经网络在预测精度和收敛速度上的显著提升。 适合人群:具备一定编程基础,特别是对机器学习和神经网络有一定了解的研发人员和研究人员。 使用场景及目标:①通过遗传算法优化BP神经网络,解决传统BP神经网络在训练过程中易陷入局部最优、收敛速度慢的问题;②自动设计网络结构,减少人工设计的复杂性;③提高模型的泛化能力,避免过拟合;④适用于时间序列预测、模式识别、分类与回归、控制系统、医疗诊断、智能推荐系统和能源管理等多个实际应用场景。 其他说明:此项目不仅提供了详细的理论解释和技术实现,还附带了完整的Python代码示例,帮助读者更好地理解和实践。建议读者在学习过程中结合代码进行调试和实践,以加深对遗传算法优化BP神经网络的理解。
1
单相逆变器MATLAB仿真研究:TCM与CCM模式性能分析与应用(输入400v输出220,L=200uH,C=20uF,P=500w),单相逆变器matlab仿真(TCM模式和CCM模式) 输入400v输出220,L=200uH,C=20uF,P=500w TCM模式: 全周期内实现zvs软开关,负电流控制外环采用pr控制,消除电压静差。 CCM模式: 外环pr控制,内环pi控制 ,1. 单相逆变器; 2. MATLAB仿真; 3. TCM模式; 4. CCM模式; 5. 输入400v输出220v; 6. L=200uH; 7. C=20uF; 8. P=500w; 9. 全周期内实现ZVS软开关; 10. 负电流控制外环PR控制; 11. 消除电压静差; 12. 外环PR控制; 13. 内环PI控制。 关键词用分号分隔为: 单相逆变器; MATLAB仿真; TCM模式; CCM模式; 输入电压; 输出电压; 电感值; 电容值; 功率; ZVS软开关; 负电流控制; PR控制算法; 消除电压静差; 外环控制; 内环控制。,Matlab仿真:单相逆变器(TCM与CCM模式)的功率控制
2025-06-23 19:56:07 224KB
1
本文详细介绍了一个使用MATLAB实现鲸鱼优化算法(WOA)优化卷积神经网络(CNN)来进行多输入单输出回归预测的研究项目。首先介绍了该项目的基本概况以及相关的理论背景,并展示了具体程序的运行流程和每个关键步骤的技术细节。该项目实现了对CNN模型超参数的优化,从而显著提高了回归预测的效果,并附带提供了一系列定量评估方法。最后,还探讨了未来可能的发展方向和完善的地方。 适用人群:有一定深度学习和优化算法基础知识的研发人员或研究人员。 使用场景及目标:针对复杂或大量特征输入而需要精准的单变量输出预测任务,例如金融时间序列分析,气象数据分析等领域。 推荐指南:由于涉及机器学习的基础理论及其算法的应用,对于初学者来说应当首先对CNN和WOA有一定的理解和认识后再开始尝试本项目实践。同时,深入学习相关资料有助于更好的完成实际操作。
2025-05-15 21:30:28 38KB 回归预测 MATLAB
1
内容概要:本文介绍了如何使用MATLAB实现鲸鱼优化算法(WOA)与卷积神经网络(CNN)结合,以优化卷积神经网络的权重和结构,从而提高多输入单输出回归预测任务的准确性。项目通过WOA优化CNN模型中的权重参数,解决传统训练方法易陷入局部最优解的问题,适用于光伏功率预测、房价预测、天气预报等领域。文章详细描述了项目背景、目标、挑战、创新点及其应用领域,并提供了模型架构和部分代码示例,包括数据预处理、WOA优化、CNN模型构建、模型训练与评估等环节。; 适合人群:对机器学习、深度学习有一定了解的研究人员和工程师,特别是关注优化算法与深度学习结合的应用开发人员。; 使用场景及目标:①解决高维复杂输入特征的多输入单输出回归预测任务;②通过WOA优化CNN的超参数和权重,提高模型的泛化能力和预测准确性;③应用于光伏功率预测、股票价格预测、房价预测、环境污染预测、医疗数据分析、智能交通系统、天气预测和能源需求预测等多个领域。; 阅读建议:由于本文涉及较多的技术细节和代码实现,建议读者先理解WOA和CNN的基本原理,再逐步深入到具体的模型设计和优化过程。同时,结合提供的代码示例进行实践操作,有助于更好地掌握相关技术和方法。
1
内容概要:本文详细介绍了一个基于 Python 的多输入单输出回归预测项目,采用随机配置网络(SCN),支持图形用户界面操作,主要功能包括数据预处理、模型构建与训练、评估以及预测结果可视化等。 适合人群:具备一定编程基础的开发者和技术爱好者,尤其对深度学习、神经网络及其实际应用有兴趣的研究者。 使用场景及目标:本项目特别适用于需要利用历史数据对未来趋势做出预测的应用场合,如股票市场预测、产品销售量预测、商品价格走势判断以及能源消耗情况估计等。旨在帮助用户理解并掌握从数据准备到模型部署的一整套流程。 其他说明:为了使模型更具实用价值,项目提出了一些改进方向,比如增加更多高级特性、增强模型的可解性和效率等;强调了正确执行数据预处理步骤的重要性和避免过拟合现象的方法论指导。
2025-05-15 15:56:31 38KB 深度学习 神经网络 Python TensorFlow
1
内容概要:本文介绍了如何在Python中实现基于CNN(卷积神经网络)、BiLSTM(双向长短期记忆网络)和注意力机制结合的多输入单输出回归预测模型。文章首先阐述了项目背景,指出传统回归模型在处理复杂、非线性数据时的局限性,以及深度学习模型在特征提取和模式识别方面的优势。接着详细描述了CNN、BiLSTM和注意力机制的特点及其在回归任务中的应用,强调了这三种技术结合的重要性。文章还讨论了项目面临的挑战,如数据预处理、计算资源消耗、过拟合、超参数调整、长时依赖建模和多模态数据融合。最后,文章展示了模型的具体架构和代码实现,包括数据预处理、特征提取、时序建模、注意力机制和回归输出等模块,并给出了一个简单的预测效果对比图。; 适合人群:具备一定编程基础,特别是对深度学习和机器学习有一定了解的研发人员和技术爱好者。; 使用场景及目标:①适用于金融市场预测、气象预测、能源需求预测、交通流量预测、健康数据预测、智能制造等领域;②目标是通过结合CNN、BiLSTM和注意力机制,提高多输入单输出回归任务的预测精度和泛化能力,减少过拟合风险,提升模型的解释性和准确性。; 阅读建议:本文不仅提供了完整的代码实现,还详细解释了各个模块的功能和作用。读者应重点关注模型的设计思路和实现细节,并结合实际应用场景进行实践。建议读者在学习过程中逐步调试代码,理解每一步的操作和背后的原理,以便更好地掌握这一复杂的深度学习模型。
2025-05-15 15:05:41 36KB Python 深度学习 BiLSTM 注意力机制
1
内容概要:本文详细介绍了如何通过麻雀算法(Sparrow Search Algorithm, SSA)优化最小二乘支持向量机(LSSVM),以提升其在多输入单输出(MISO)回归预测任务中的性能。首先阐述了LSSVM的基本原理及其在处理复杂非线性数据方面的优势,接着讨论了传统LSSVM存在的超参数优化难题。然后重点介绍了麻雀算法的特点及其在优化LSSVM超参数方面的应用,展示了如何通过全局搜索能力克服局部最优问题,提高预测精度和泛化能力。最后,通过多个实际案例验证了该方法的有效性,并提供了完整的Python代码实现,涵盖从数据预处理到模型评估的全过程。 适合人群:对机器学习尤其是回归分析感兴趣的科研人员和技术开发者,以及希望深入了解LSSVM和麻雀算法优化机制的研究者。 使用场景及目标:①适用于需要高精度预测的应用领域,如金融预测、气象预报、能源需求预测等;②通过优化LSSVM的超参数,提高模型的预测精度和泛化能力;③提供一个易于使用的回归预测工具,便于快速部署和应用。 其他说明:本文不仅探讨了理论层面的内容,还给出了具体的代码实现,使读者能够在实践中理解和掌握相关技术。同时,文中提到
1
在MATLAB环境中,最小二乘法(Least Squares Method)是一种广泛应用的数据拟合技术,尤其在预测模型构建中。这个“matlab最小二乘进行多输入,多输出预测代码”很可能是用来解决复杂的系统建模问题,其中输入变量可能有多个,而输出也可能不止一个。在多输入多输出(MIMO)系统中,这种模型可以模拟多个输入如何影响多个输出,广泛应用于控制工程、信号处理、机器学习等多个领域。 最小二乘法的基本思想是通过最小化残差平方和来寻找最佳拟合直线或超平面。对于多输入多输出情况,这通常涉及到多元线性回归模型的构建,即预测输出变量是输入变量的线性组合。在MATLAB中,可以使用`lsqnonlin`或`lsqcurvefit`函数来实现非线性最小二乘拟合,而对于线性问题,`lsqlin`函数则更为直接。 以下是多输入多输出预测模型的基本步骤: 1. **数据准备**:收集足够的多输入(自变量)和多输出(因变量)的历史数据。这些数据需要代表系统的各种工作状态。 2. **模型定义**:设定模型结构,比如决定输入变量如何影响每个输出。这通常表示为一个矩阵方程形式:`Y = H * X + E`,其中`Y`是输出向量,`H`是系数矩阵,`X`是输入向量,`E`是误差项。 3. **参数估计**:使用MATLAB的`lsqlin`函数找到最佳的系数矩阵`H`,使得预测的输出与实际输出的残差平方和最小。这个过程涉及到求解正规方程或使用梯度下降等优化算法。 4. **模型验证**:将模型应用于验证集数据,检查其预测性能,如均方误差(MSE)、决定系数(R²)等。 5. **模型应用**:一旦模型经过验证,就可以用它来预测新的输入值对应的输出。 在提供的“PSR多输入多输出”文件中,可能包含了具体的MATLAB代码实现,包括数据预处理、模型构建、参数估计和结果评估等环节。这类代码的阅读和理解有助于深入学习多输入多输出系统的预测方法,特别是如何利用最小二乘法进行参数估计和模型优化。 在MATLAB软件/插件标签的上下文中,可能还涉及到了一些特定的工具箱,如Optimization Toolbox(用于优化算法)或者Curve Fitting Toolbox(用于曲线拟合),这些工具箱提供了丰富的函数和图形界面,便于进行模型的建立和分析。 多输入多输出预测模型结合MATLAB的最小二乘方法,提供了一种强大且灵活的工具,可以有效地处理复杂的系统预测问题。通过理解和运用这些知识,工程师和研究人员能够对现实世界中的系统行为进行准确预测,从而做出有效的决策。
2025-04-24 16:15:28 504KB matlab
1