自动驾驶技术:动态避障与路径规划控制系列视频教程——MATLAB Simulink仿真实验及代码实现,自动驾驶路径规划 采用动态规划实现动态避障功能 MATLAB SIMULINK仿真实验视频效果 代码,相应软件安装好即可直接运行 从汽车运动学到动力学模型搭建,设计控制算法,到决策规划算法,一整套自动驾驶规划控制系列目前已在Matlab2018b、carsim2019.1 和prescan8.5.0联合软件上跑通 提供代码 ,核心关键词:自动驾驶; 路径规划; 动态规划; 避障功能; MATLAB SIMULINK仿真实验; 运动学模型; 动力学模型; 控制算法; 决策规划算法; Matlab2018b; carsim2019.1; prescan8.5.0。,"基于动态规划的自动驾驶路径规划与避障系统设计与仿真"
2025-05-04 17:33:30 126KB 柔性数组
1
内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
六自由度机械臂RRT路径规划算法的梯形速度规划与避障实现:路径、关节角度变化曲线、关节速度曲线及避障动图解析.pdf
2025-04-30 17:26:12 52KB
1
六自由度机械臂RRT路径规划与梯形速度规划的避障实现:附详细注释与改进动图曲线分析,六自由度机械臂RRT路径规划与梯形速度规划实现避障的算法研究及曲线绘制分析,六自由度机械臂RRT路径规划算法梯形速度规划规划,实现机械臂避障。 并绘制相关曲线: 1.经过rrt算法规划得到的路径; 2.关节角度变化曲线、关节速度曲线; 3.机械臂避障动图。 代码有详细注释,自己学习后进行了标注和改进。 ,RRT路径规划算法; 机械臂避障; 梯形速度规划; 关节角度变化曲线; 关节速度曲线; 路径规划结果; 改进后的代码注释。,基于RRT算法的六自由度机械臂避障路径规划与速度规划
2025-04-30 17:21:50 452KB kind
1
六自由度机械臂仿真:基于RRT避障算法的无碰撞运动规划与轨迹设计,六自由度机械臂RRT避障算法仿真:DH参数运动学与轨迹规划研究,机械臂仿真,RRT避障算法,六自由度机械臂 机械臂matlab仿真,RRT避障算法,六自由度机械臂避障算法,RRT避障算法,避障仿真,无机械臂关节碰撞机械臂 机器人 DH参数 运动学 正逆解 urdf建模 轨迹规划 ,核心关键词:机械臂仿真; RRT避障算法; 六自由度机械臂; 避障仿真; 关节碰撞; DH参数; 运动学; 轨迹规划。,基于RRT算法的六自由度机械臂避障仿真与运动学研究
2025-04-27 16:38:09 507KB 开发语言
1
文件内容:程序+proteus仿真电路 使用元器件:STM32F103C8、蜂鸣器电路、OLED、电机驱动模块、电机、左右两个红外传感器、超声波模块、按键、LED。 主要功能:1.OLED显示屏显示系统当前状态,是否开始运行,以及前方是否有障碍物。 2. 电机驱动模块驱动电机的运行,共使用两个驱动模块驱动四个电机。 3.红外循迹传感器对两次进行检测,当检测到边沿时,自动进行调整。 4.超声波模块对前方是否有障碍物进行检测,当检测到前方有障碍时,蜂鸣器进行报警,并开始自动避障。 5.利用按键控制避障小车的开始和关闭状态,同时LED作为系统呼吸灯存在。
2025-04-25 21:31:21 13.3MB stm32 proteus 红外循迹避障
1
基于RRT避障算法的无碰撞六自由度机械臂仿真:DH参数化建模与轨迹规划探索,机械臂仿真,RRT避障算法,六自由度机械臂 机械臂matlab仿真,RRT避障算法,六自由度机械臂避障算法,RRT避障算法,避障仿真,无机械臂关节碰撞机械臂 机器人 DH参数 运动学 正逆解 urdf建模 轨迹规划 ,核心关键词:机械臂仿真; RRT避障算法; 六自由度机械臂; 避障仿真; 无碰撞; DH参数; 运动学; 轨迹规划。,基于RRT算法的六自由度机械臂避障仿真与运动学研究 在当前工业自动化和智能制造领域,六自由度机械臂的应用越来越广泛。为了提高其作业效率和安全性,需要对其运动进行精确控制,避免在复杂环境中与其他物体或自身结构发生碰撞。本研究以RRT(Rapidly-exploring Random Tree)避障算法为核心,探讨如何实现无碰撞的六自由度机械臂仿真,其中涉及到DH(Denavit-Hartenberg)参数化建模与轨迹规划的关键技术。 RRT避障算法是一种基于概率的路径规划方法,适用于复杂和高维空间的避障问题。通过随机采样空间中的点,并在此基础上构建出一棵能够快速覆盖整个搜索空间的树状结构,RRT算法可以高效地找到从起点到终点的路径,并在路径规划过程中考虑机械臂各关节的运动限制和环境障碍,从而实现避障。 DH参数化建模是机器人学中的一种经典建模方法,通过四个参数(连杆长度、连杆扭角、连杆偏移、关节角)来描述机械臂的每一个关节及其连杆的运动和位置关系。通过DH参数化建模,可以准确地表示机械臂的每一个姿态,为轨迹规划提供数学基础。 轨迹规划是确定机械臂从起始位姿到目标位姿的路径和速度的过程,是实现机械臂自动化控制的关键步骤。在轨迹规划中,需要考虑到机械臂的运动学特性,包括正运动学和逆运动学的求解。正运动学是从关节变量到末端执行器位置和姿态的映射,而逆运动学则是根据末端执行器的目标位置和姿态反推关节变量的值。只有精确求解运动学问题,才能确保轨迹规划的准确性。 URDF(Unified Robot Description Format)建模是一种用于描述机器人模型的文件格式,它基于XML(eXtensible Markup Language)语言。在本研究中,通过URDF建模可以实现机械臂的三维模型构建和仿真环境的搭建,为后续的仿真测试提供平台。 本研究通过综合应用RRT避障算法、DH参数化建模、运动学求解以及URDF建模,对六自由度机械臂进行仿真分析和轨迹规划。在这一过程中,研究者需要关注如何在保证运动轨迹合理性和机械臂运行安全性的前提下,优化避障算法,提高机械臂的作业效率和环境适应能力。 研究中还涉及了避障仿真和无碰撞的概念,这些是确保机械臂在动态变化的环境中稳定作业的重要方面。通过仿真实验,可以验证算法和模型的有效性,并通过不断迭代优化,提升机械臂在实际应用中的性能。 此外,文档中提到的图像文件可能为研究提供了可视化支持,辅助说明机械臂在不同工作阶段的运动状态,以及避障过程中遇到的环境障碍。 通过以上分析,本研究不仅为六自由度机械臂的控制提供了理论支持,也为实际工业应用中的机械臂设计和运动规划提供了实用的解决方案,对推动智能制造和自动化技术的发展具有重要意义。
2025-04-23 10:43:35 133KB scss
1
超声波避障技术在机器人领域中广泛应用,主要用于无人车辆、无人机、服务机器人以及工业自动化设备等,通过发射超声波并接收反射回波来探测障碍物的距离和位置。超声波避障程序是实现这一功能的核心软件部分,它包含了算法设计、数据处理和系统集成等多个环节。 我们要理解超声波避障的基本原理。超声波是一种频率高于人耳听觉范围(约20kHz以上)的声波。在避障应用中,通常会使用专门的超声波传感器,如HC-SR04或MAX44009等,这些传感器能够发送短促的超声波脉冲,并在接收到反射回波时计算时间差,进而根据声速(约343m/s在空气中)换算出到障碍物的距离。 超声波避障程序主要包含以下几个部分: 1. **信号触发**:程序需要控制超声波传感器发出脉冲信号,这个过程通常通过GPIO(通用输入/输出)接口完成。比如,向传感器的TRIG引脚发送一个高电平脉冲,使其启动发射超声波。 2. **回波检测**:当超声波传感器的ECHO引脚接收到反射回波时,会输出一个高电平持续时间与接收到回波的时间成正比的脉冲。程序需要监听这个信号,计算脉冲宽度,从而获取距离信息。 3. **距离计算**:根据脉冲宽度T(单位为微秒),可以计算出超声波往返的时间,即t = T / 2。然后,利用声速v(343m/s),可得到到障碍物的距离d = v * t / 2。 4. **数据处理**:考虑到环境因素(温度、湿度)对声速的影响,以及传感器的精度限制,程序需要进行数据校准和滤波处理。例如,可以采用平均值滤波法减少噪声,或者使用更复杂的算法如滑动窗口滤波、卡尔曼滤波等提高测量精度。 5. **避障决策**:根据测量到的距离,程序会做出避障决策。这可能涉及到设置一个安全阈值,当检测到的距离小于阈值时,机器人或设备就需要采取转向、减速等动作以避开障碍物。 6. **系统集成**:超声波避障程序需要与机器人的控制系统或其他感知模块(如摄像头、红外传感器)集成,协同工作以实现更全面的避障策略。 超声波避障程序是机器人自主导航的关键组成部分,它涉及硬件驱动编程、信号处理、运动控制等多个方面的知识。通过不断优化和完善,超声波避障技术能为机器人提供高效且可靠的避障能力。在“超声波避障程序.rar”这个压缩包中,很可能是包含了一套完整的避障程序源代码和相关文档,供开发者参考和使用。
2025-04-23 10:05:44 40KB 超声波避障
1
毕业设计-基于STM32的循迹避障小车源码分享
2025-04-15 15:19:50 7.91MB 毕业设计 stm32
1
动态窗口法(DWA)是一种用于移动机器人避障的算法,特别是在小车类的移动机器人中应用广泛。它能够实时处理机器人的运动规划和避障任务,是智能小车在复杂环境中的导航与定位的关键技术之一。DWA算法的核心思想是在机器人当前速度的基础上,动态地规划出一段短时间内的速度增量,使得机器人能够平滑地绕开障碍物,并且向着目标方向移动。 在仿真环节中,通过Matlab这一强大的数学计算和仿真平台,可以构建小车避障的仿真模型。Matlab不仅提供了丰富的数学运算和图形处理功能,而且其Simulink模块还可以用于构建动态系统的仿真模型,使得开发者能够直观地观察到小车在虚拟环境中的避障表现。在Matlab环境下使用DWA算法进行仿真,通常需要考虑的因素包括小车的运动学模型、环境地图、目标位置、以及障碍物的分布情况。 在设计DWA算法时,需要关注以下几个关键的步骤: 1. 确定运动学模型:需要根据小车的实际结构设计其运动学模型,通常使用差分驱动模型进行简化处理,以便于计算小车的速度和转向。 2. 环境建模:在仿真环境中建立小车运动的场景,包括设定目标点、障碍物的形状和位置,以及环境边界等。 3. 动态窗口生成:在每个控制周期内,根据小车当前的速度和加速度约束,计算出在极短时间内可实现的所有速度组合,形成一个动态窗口。 4. 评价函数构建:构建一个评价函数来评估每个速度组合的优劣,通常会考虑目标距离、避障能力、运动平滑度等多个指标。 5. 选择最优速度:根据评价函数的计算结果,选出最优的速度组合,使得小车既能避开障碍,又能尽快地向目标移动。 6. 重复执行:在每个控制周期重复上述步骤,直至小车成功避开所有障碍物并到达目标点。 在实际应用中,DWA算法的性能会受到许多因素的影响,例如动态窗口的大小、评价函数的设计、实时计算能力等。此外,DWA算法需要进行大量的参数调整和测试,以确保在不同的场景下都能有良好的表现。在Matlab环境下进行仿真,可以方便地修改和调整这些参数,并直观地观察到算法性能的变化。 通过Matlab仿真,不仅可以验证DWA算法的可行性,还可以在没有实际硬件的情况下,对算法进行调试和优化。这在机器人的研发过程中具有重要的意义,可以节约大量的时间和成本。随着机器人技术的不断进步,DWA算法也在不断地被改进和完善,以适应更多样化和复杂的环境。 此外,DWA算法的研究和应用不仅仅局限于小车避障。在无人机、自动驾驶汽车等领域的运动规划中,动态窗口法也被广泛地研究和应用。通过不断地探索和创新,DWA算法有望在未来的智能交通系统中扮演更为重要的角色。 DWA算法是机器人运动规划中的重要技术,Matlab仿真为DWA算法的研究和应用提供了强有力的支持。通过合理的模型设计和参数调整,可以使得小车在复杂环境中的避障性能达到预期的效果。
2025-04-09 00:21:39 1.57MB Matlab
1