由于不确定因素多、电网规模大,原始蒙特卡洛模拟(MCS)在复杂电力系统可靠性评估中无法满足实时高效的要求。提出一种基于交叉熵(CE)的重要抽样与极限学习机(ELM)相结合的可靠性评估算法,一方面通过在系统抽样环节引入CE构建元件的最优概率分布,减小方差变化,加快指标收敛速度;另一方面,采用ELM对重要抽样的状态样本进行有监督学习,以所构建的网络学习模型替代传统非线性规划方法进行状态评估,提高单次系统状态评估的效率,从而实现快速可靠性评估。对IEEE RTS-79系统进行可靠性评估,与原始MCS和CE重要抽样的对比结果表明,在一定的误差范围内所提算法合理、有效,其计算效率较原始MCS和CE显著提高。
1
针对非线性隐式极限状态方程的可靠度指标计算,将支持向量机和粒子群优化算法相结合,提出了一种结构可靠度算法.首先结合支持向量机不受样本点限制的优点,将历次迭代产生样本点加入本次迭代样本点中,采用支持向量机对样本点进行训练,然后引入粒子群优化算法计算可靠度指标,解决迭代过程中支持向量机回归模型可靠度指标计算震荡不收敛的情况,最后根据可靠度指标收敛得到的支持向量机回归模型,采用重要抽样法计算失效概率.计算结果表明:该方法得出的失效概率具有较好的精度,特别是针对迭代过程中可靠度指标不收敛的情况具有良好的适用性.
1
可靠性算法,重要抽样法的Matlab源代码,能够考虑任意分布的随机变量,里面包含部分测试例子,可直接在Matlab软件中调用执行,文件中包含详细的注释。
2021-08-09 20:33:41 12KB 可靠性 重要抽样法 Matlab
1
行业分类-电子电器-基于重要抽样影响增量的电力系统可靠性评估方法及装置.zip
基于重要抽样的Mcs可靠性法.m
2021-01-28 22:08:54 2KB matlab 重要抽样IS Mcs 可靠性
1