在数字电路设计中,毛刺消除和输入消抖是两个重要的概念,特别是在FPGA(Field-Programmable Gate Array)开发中。毛刺是由于信号传输过程中的噪声或硬件问题导致的短暂异常脉冲,而输入消抖则是为了处理快速开关的输入信号,避免由于机械抖动引起的误触发。这两个技术在Verilog编程中尤为重要,因为它们可以确保设计的稳定性和可靠性。 让我们了解毛刺消除。毛刺通常是由电源波动、电磁干扰或者逻辑门延迟不匹配造成的。单边毛刺滤除通常是指对上升沿或下降沿的短暂异常进行过滤,例如,通过设置一个最小宽度阈值,只接受超过这个阈值的脉冲。双边毛刺滤除则更为全面,它会检查信号的上升沿和下降沿,确保信号在变化过程中保持稳定的时间间隔。在Verilog中,可以通过比较器和寄存器实现这种滤波,例如,用一个寄存器存储前一时刻的信号状态,然后与当前信号比较,只有当信号状态持续改变一定时间后才输出。 接下来是输入消抖,这是针对机械开关(如按钮)输入的处理方法。由于机械结构的物理特性,这些输入可能会在短时间内反复切换,造成不必要的多次触发。输入防抖的基本思想是在检测到一个新状态后,等待一段时间再确认该状态,如果在这段时间内输入没有再次改变,那么就认为这是一个稳定的信号。在Verilog中,可以创建一个计时器,当输入改变时启动计时器,如果在预设时间内输入没有再次改变,就输出稳定的状态。 下面是一个简单的Verilog代码示例,演示了输入消抖的过程: ```verilog module input_debounce( input wire clk, input wire btn_in, output reg btn_out ); parameter DEBOUNCE_TIME = 10; // 假设消抖时间为10个时钟周期 reg [DEBOUNCE_TIME-1:0] counter; always @(posedge clk) begin if (!btn_in && btn_out) begin counter <= {counter[DEBOUNCE_TIME-2:0], 1'b0}; end else if (btn_in && !btn_out) begin counter <= {counter[DEBOUNCE_TIME-2:0], 1'b1}; end else begin counter <= counter - 1; end if (counter == 0) begin btn_out <= btn_in; end end endmodule ``` 在这个例子中,`counter`用于计时,每当输入`btn_in`变化时,计时器重置并开始计数。如果在`DEBOUNCE_TIME`个时钟周期内输入没有再次变化,`btn_out`将更新为稳定的输入状态。 对于测试和验证,我们可以创建一个Testbench,模拟不同的输入序列,观察输出是否正确地进行了消抖和毛刺滤除。仿真结果通常会显示波形图,清晰地展示出输入和经过处理后的输出之间的关系,帮助我们验证设计的正确性。 毛刺消除和输入消抖是数字系统设计中不可或缺的部分,它们确保了信号的可靠传输和处理。通过Verilog编程,我们可以实现这些功能,并通过Testbench和仿真结果来验证其有效性。在实际项目中,理解和应用这些概念有助于提高系统的稳定性和用户体验。
2025-09-18 10:42:39 53KB fpga verilog
1
在摄影和摄像领域,防抖技术是至关重要的,尤其是在光线不足或者移动拍摄时,能有效减少图像模糊。本文将深入探讨“陀螺仪防抖”和“电子防抖”这两种防抖技术,并通过夜间30倍变焦的场景进行对比分析。 陀螺仪防抖,又称为光学图像稳定(Optical Image Stabilization, OIS),是通过内置的陀螺仪检测相机的微小移动,然后调整镜头或传感器的位置来抵消这些运动。在“夜间陀螺仪防抖30X.mp4”视频中,我们可以看到,在30倍变焦的夜间环境下,陀螺仪防抖能够显著降低手抖对图像质量的影响,保持图像清晰度,这对于捕捉远处细节尤其关键。 电子防抖(Electronic Image Stabilization, EIS)是通过软件算法来实现的,它分析视频帧之间的差异,然后在显示时对画面进行补偿,以减少抖动。在“夜间电子防抖30X.mp4”中,尽管EIS在一定程度上也能提供防抖效果,但在光线较暗或特征点不明显的夜间环境中,其性能可能不如陀螺仪防抖,因为EIS依赖于图像信息进行补偿,而夜间环境下图像信息可能较弱。 在白天或特征点明显的条件下,由于有更多的视觉线索可供EIS算法分析,电子防抖与陀螺仪防抖的效果较为接近。两者都能有效地减轻图像模糊,提供更稳定的视觉体验。然而,陀螺仪防抖在处理大幅度的移动或变焦时,通常能提供更准确、更即时的补偿,特别是在高倍率变焦下。 值得注意的是,两种防抖技术各有优缺点。陀螺仪防抖提供了物理级别的稳定,但可能会增加设备的体积和成本;电子防抖则更加轻便,但依赖于软件算法,可能会牺牲一些图像质量。在实际应用中,用户需要根据具体需求和设备条件选择适合的防抖方案。 总结来说,陀螺仪防抖和电子防抖在不同环境下有着不同的表现。在夜间或特征点不明显的条件下,陀螺仪防抖在30倍变焦时显示出更优秀的防抖效果,而白天或特征点丰富的环境,两者效果相差不大。理解这两种防抖技术的工作原理及其适用场景,对于提升摄影摄像的质量具有重要的指导意义。
2024-11-28 09:16:52 27.23MB
1
1、功能主要实现:滚动视频播放视频、点赞、收藏、分享、售卖商品 2、已经功能实现,直接调用,引用数据即可,方便快捷 3、滚动流畅度比较舒服、采用swiper三div互相轮播,让滚动轮播图不会产生卡顿现象,加载分页,不断进行轮播播放视频。 4、视频没有屏幕宽高,将会居中显示,上下黑色展示。 5、网上绝大多数视频播放页面卡顿,苦不堪言。
1
2014年是OIS摄像头爆发式进入手机市场的元年,AppleIPhone6Plus,三星GalaxyNote4等旗舰机型,国内大厂VIVOXshot,NUBIAZ7,IUNI
2023-02-17 14:39:56 647KB LabVIEW
1
FPGA按键防抖,很好的,很详细,用的是verilog
2022-12-01 23:06:33 458KB FPGA 按键防抖
1
1.内容概要: 按键检测代码,采用delay_ms方式,进行延时防抖。优点是不需要等到按键弹起就可以检测,缺点是会产生delay阻塞。 2. 使用说明: 通过修改宏定义可以修改开关时间; 通过查看头文件可以方便移植到不同硬件上; 3. 适合人群: 适合STM32学习者,或者STM32从业人员,便于积累功能模块,了解无阻塞设计方式;掌握静态全局变量,全局变量使用方法 4. 其他说明: 详情见博客: http://t.csdn.cn/DP43e
2022-07-19 14:00:37 351KB STM32 MCU C 按键检测
1
1.内容概要: 按键检测代码,利用定时器实现按键防抖,全程无阻塞方式。 2. 使用说明: 通过修改宏定义可以修改开关时间; 通过查看头文件可以方便移植到不同硬件上; 3. 适合人群: 适合STM32学习者,或者STM32从业人员,便于积累功能模块,了解无阻塞设计方式;掌握静态全局变量,全局变量使用方法 4. 其他说明: 详情见博客: http://t.csdn.cn/DP43e
2022-07-19 14:00:35 350KB STM32 C语言 按键检测 按键防抖
1
1.内容概要: 按键检测代码,采用while循环方式,死等按键弹起。优点是稳定且实现了按键防抖,缺点是while循环在按键卡死状态下,会导致系统死机。 2. 使用说明: 通过修改宏定义可以修改开关时间; 通过查看头文件可以方便移植到不同硬件上; 3. 适合人群: 适合STM32学习者,或者STM32从业人员,便于积累功能模块,了解无阻塞设计方式;掌握静态全局变量,全局变量使用方法 4. 其他说明: 详情见博客: http://t.csdn.cn/DP43e
2022-07-18 19:00:34 348KB MCU STM32 C
1
用来演示无阻塞方式按键防抖代码开发 1. 完成了TIM, USART, LED GPIO初始化,从这里开始修改代码 2. 使用说明: 通过修改宏定义可以修改开关时间; 通过查看头文件可以方便移植到不同硬件上; 3. 适合人群: 适合STM32学习者,或者STM32从业人员,便于积累功能模块,了解无阻塞设计方式;掌握静态全局变量,全局变量使用方法 4. 其他说明: 更加详细说明见博客
2022-07-18 09:00:47 339KB STM32 MCU 无阻塞开发 按键检测
1
使用定时器实现按键防抖的嵌入式驱动源代码和Makefile编译文件和应用层测试代码
2022-05-27 19:01:25 226KB arm 嵌入式硬件