毕业设计做的东西,希望对大家有帮助,包括滤波,二值化等等
2025-05-03 19:26:34 803B 图像预处理
1
基于MATLAB的交通限速标志智能识别系统:从图像预处理到数字精准识别的一站式解决方案,"基于MATLAB的交通限速标志识别系统:从图像预处理到数字识别的全流程实战",基于matlab的交通限速标志识别系统 【标志识别】计算机视觉,数字图像处理常见实战项目。 过程:图像预处理,标志定位,数字分割,数字识别,结果展示。 输入生活中常见的限速标志图片,系统根据限速标志的位置进行定位识别,并且识别限速标志中的数字。 包远程调试,送报告(第062期) ,基于Matlab;交通限速标志识别系统;计算机视觉;数字图像处理;图像预处理;标志定位;数字分割;数字识别;远程调试;报告。,MATLAB交通限速标志自动识别系统:图像处理与结果展示
2025-04-24 21:19:27 704KB
1
基于MATLAB的谷物颗粒数量计数识别系统——玉米计数与图像预处理技术详解,基于matlab谷物颗粒数量计数识别系统 玉米计数 图像预处理有灰度化 滤波图像 二值化 形态学处理和连通域标记 无gui界面50r,有gui界面100r,需要gui请两份 注释全面, ,基于Matlab;谷物颗粒数量计数识别系统;玉米计数;图像预处理;灰度化;滤波图像;二值化;形态学处理;连通域标记;无GUI界面;有GUI界面。 关键词:Matlab;谷物颗粒计数;图像预处理;灰度化;滤波;二值化;形态学处理;连通域标记;无gui界面价格;有gui界面价格。,基于Matlab的玉米颗粒计数识别系统:图像预处理与两种界面选项
2025-04-24 03:01:00 243KB sass
1
农产品价格预测是农业经济学和市场研究领域的一个重要分支,它帮助农户、政策制定者和相关企业了解市场动态,合理安排生产和销售。本文档介绍了一种基于transformer方法的农产品价格预测技术,不仅提供了实际的数据集,还包含了数据预处理和价格预测方法,以及结果的可视化展示和多种transformer方法的对比分析。 transformer模型最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出,是自然语言处理(NLP)领域的一项革新。它的核心是自注意力(self-attention)机制,能够捕捉序列数据中任意两个位置之间的依赖关系,并且在处理长距离依赖时效果显著。transformer模型由于其优越的性能在机器翻译、文本生成等NLP任务中得到了广泛应用,并逐渐扩展到其他序列预测任务,包括时间序列数据的预测。 在农产品价格预测方面,transformer模型能够捕捉到价格时间序列中的复杂动态关系,对价格波动进行精准预测。考虑到农产品价格受到多种因素的影响,如季节性、天气条件、市场需求、政策调控等,使用传统的时间序列预测方法可能无法充分捕捉这些非线性的关系。而transformer模型能够通过自注意力机制自动学习到这些因素间复杂的影响关系,提高预测精度。 本文档所使用的数据集包含了30多种类近4万条数据,覆盖了不同种类的农产品,且数据采样可能包含日频、周频或者月频,具有实际的市场研究价值。数据集中的每一条记录可能包括价格、时间、地区、交易量等特征,这对于训练transformer模型至关重要,因为模型性能很大程度上依赖于高质量的输入数据。 数据预处理是机器学习项目中的重要步骤,对于提高模型预测性能非常关键。预处理可能包括缺失值处理、异常值检测与处理、数据标准化或归一化、特征选择和构造等。良好的数据预处理能够保证模型能够更加准确地学习到数据中的有用信息,减少噪声对模型的影响。 文档中提到的Transformer_train.py和Transformer_test.py两个脚本文件分别用于模型的训练和测试,它们是实现transformer模型在农产品价格预测任务中的应用工具。Transformer.py和encoded.py可能是实现transformer模型架构及相关数据编码过程的Python代码文件。通过运行这些脚本,研究者可以完成数据集的加载、模型的训练与调参、预测结果的生成和评估等工作流程。 结果的可视化是展示模型预测性能的重要手段,它能直观地反映模型预测结果与实际值之间的吻合程度。通过可视化工具,如图表、趋势线等,相关人员可以更容易地理解模型的预测效果,进而做出更加合理和科学的决策。 文档提到的多种transformer方法的对比,说明了研究者在模型选择上可能采用了多种不同的transformer变体,如BERT、GPT、XLNet等,通过比较它们在相同数据集上的预测性能,可以选出最适合农产品价格预测的模型结构。这种模型比较不仅有助于选择最佳的预测模型,而且还能为后续研究提供模型优化的方向。 本文档提供了一个完整的农产品价格预测流程,从数据集的收集、预处理到使用先进的transformer模型进行价格预测,再到预测结果的评估与可视化,最后是对不同transformer模型进行对比分析,为农业经济学研究和实践提供了有价值的技术支持和参考。
2025-04-23 14:40:19 159KB transformer 价格预测
1
在本研究中,我们探索了利用长短期记忆网络(LSTM)对农产品价格进行预测的可能性。LSTM是一种特殊的循环神经网络(RNN),非常适合处理和预测时间序列中的重要事件。这种方法在处理时间序列数据时具有优势,因为它们可以持续记住历史信息,并利用这些信息来预测未来的趋势。农产品价格预测是一个典型的时序预测问题,涉及到许多变量,例如季节性变化、天气条件、供需关系等,这些都是随时间变化的重要因素。 本研究的目标是通过LSTM方法来提高农产品价格预测的准确性。为了达到这一目标,研究者们首先收集并整理了大量的农产品价格数据。具体来说,数据集包含了接近30种不同农产品,近4万条历史价格记录。这些数据不仅涵盖了多种农产品,而且时间跨度也足够长,为训练LSTM模型提供了丰富的时间序列数据。 在进行预测之前,数据预处理是一个必不可少的步骤。数据预处理包括清洗原始数据、填补缺失值、异常值处理、数据标准化或归一化等。这些步骤确保了输入到模型的数据质量,直接影响到模型训练的效果和预测的准确性。在本研究中,数据预处理的详细步骤虽然没有详细披露,但可以预见的是,为了提升数据的质量,确保模型能够从数据中学习到有效的信息,研究者们肯定对数据集进行了细致的预处理。 数据预处理之后,研究者们利用LSTM模型对农产品价格进行预测。LSTM模型通过其特有的门控机制来学习数据中的长期依赖关系。在训练过程中,模型会不断调整内部参数,以最小化预测值与实际值之间的差异。通过迭代训练,LSTM模型能够逐渐捕捉到价格变化的规律,并对未来的农产品价格进行较为准确的预测。 为了更直观地展示预测结果,研究者们实现了结果的可视化。可视化是数据分析中非常重要的一个环节,它可以帮助人们直观地理解数据和模型的预测结果。在本研究中,可能使用了图表或图形来展示历史价格数据、模型的预测曲线以及两者之间的对比。通过这些可视化的手段,即使是非专业人士也能够直观地理解模型的预测能力。 除了LSTM方法外,研究还对比了多种transformer方法在农产品价格预测中的表现。Transformers最初在自然语言处理(NLP)领域取得成功,但它们也被证明在处理时间序列数据时同样有效。与LSTM类似,Transformers也是捕捉数据中的时间依赖性,但它们采用自注意力机制来处理序列数据。研究者们比较了这些方法在相同数据集上的性能,为选择最适合农产品价格预测的方法提供了依据。 本研究的成果不仅在于提出了一种有效的农产品价格预测方法,更在于建立了一个包含近4万条记录的农产品价格数据集。这一数据集对于后续的研究者而言,是一个宝贵的资源。它可以用于测试新的预测模型,或者进一步研究影响农产品价格的各种因素。 本研究通过建立一个大规模的农产品价格数据集,采用LSTM网络进行价格预测,并与多种transformer方法进行对比,最终得到了有效的预测模型,并提供了可视化的结果。这一成果对于农业市场分析、价格风险评估以及相关政策制定都有着重要的意义。
2025-04-23 14:29:33 87KB LSTM 价格预测
1
农产品价格预测是农业市场分析的重要组成部分,对于农产品供应链管理、农民收入预估以及政府制定相关政策都具有重要意义。随着机器学习技术的发展,利用深度学习模型进行农产品价格的预测越来越受到关注。特别是长短期记忆网络(LSTM)和Transformer模型,在序列数据处理和预测任务中展现出强大的能力。 LSTM是一种特殊的循环神经网络(RNN),其设计目的是为了解决传统RNN在处理长序列数据时面临的梯度消失和梯度爆炸问题。LSTM通过引入门控机制来调节信息流动,能够学习序列数据中的长期依赖关系。而Transformer模型则放弃了传统的循环结构,采用自注意力(Self-Attention)机制,使得模型能够更有效地捕捉序列内各个位置之间的依赖关系,并且在并行化处理和长距离依赖学习方面表现更为优异。 本文档所涉及的研究,首先整理并清洗了包含30多种农产品近4万条历史价格数据的数据集。在数据预处理阶段,可能包括数据去噪、标准化、缺失值处理、时间序列的窗口划分等步骤,以保证数据质量,为模型训练提供准确的基础。 在模型构建方面,文档中提到的LSTM_train.py和Transformer_train.py文件分别包含LSTM和Transformer模型的训练代码。这些代码会定义模型结构、损失函数和优化算法,并对数据进行拟合。LSTM模型可能会使用LSTM层作为主要构建单元,并通过堆叠多层LSTM来加深模型结构。而Transformer模型则会依据自注意力机制来设计编码器(Encoder)和解码器(Decoder),并可能包含位置编码(Positional Encoding)来引入序列内元素的位置信息。 除了模型训练之外,Transformer_test.py文件用于模型测试,以评估训练好的模型在独立数据集上的泛化能力。评估指标可能包括均方误差(MSE)、均方根误差(RMSE)等,这些指标能够直观地反映出模型预测值与实际价格之间的差距。 在结果可视化方面,可以利用图表等直观的形式展示预测结果与实际值的对比,分析模型的预测精度和误差分布,这有助于理解模型在不同时间段的表现,并指导后续的模型优化。 此外,文档还提到多种LSTM和Transformer方法的对比。可能的对比实验包括不同网络结构的LSTM模型、不同的注意力机制设计以及不同的编码器数量等。通过对比实验,研究者可以评估各种模型结构对于农产品价格预测任务的适用性和预测性能,选择最佳的模型配置。 在整个研究过程中,农产品数据集.csv文件扮演着核心角色,包含了所需的所有数据信息。数据集按照时间顺序排列,可能包括农产品名称、价格、交易日期、供应量等重要字段。数据集的规模和质量直接影响到模型训练的效果和预测结果的可靠性。 本研究通过结合LSTM和Transformer模型的优势,构建了一个全面的农产品价格预测系统。该系统不仅涵盖了数据预处理、模型训练、测试和结果评估等关键环节,还通过可视化的方式直观展示预测效果,为农产品价格的预测提供了有力的技术支持。通过这样的系统,相关从业者和政策制定者可以更好地理解市场动态,做出更为精准的决策。
2025-04-23 14:18:58 92KB 价格预测 LSTM Transformer
1
内容概要:本文详细介绍了基于Matlab GUI界面的手写体数字识别系统的实现过程。该系统主要分为四个部分:首先是图像预处理,包括二值化、噪声处理、图像分割、归一化和细化等步骤,确保输入图像的质量;其次是特征提取,将处理后的图像转化为可用于机器学习的特征向量;再次是BP神经网络的构建与训练,用于对手写体数字进行分类识别;最后是Matlab GUI界面的设计,提供用户友好型的操作环境。文中不仅给出了详细的代码示例和技术解析,还展示了系统的实验结果及其在实际应用场景中的表现。 适合人群:对图像处理、机器学习感兴趣的初学者,尤其是希望了解如何使用Matlab实现简单AI项目的开发者。 使用场景及目标:适用于需要快速搭建手写体数字识别原型的研究人员或学生项目。通过该项目,学习者可以掌握从图像采集到模型部署的完整流程,同时加深对BP神经网络的理解。 其他说明:作者强调了预处理对于提高识别精度的重要性,并分享了一些实践经验,如选择合适的滤波器尺寸、调整神经网络层数等技巧。此外,文中提到未来可以探索的方向,例如引入更先进的深度学习算法以进一步提升系统的鲁棒性和准确性。
2025-04-22 14:53:45 391KB
1
LUNA16数据集,已经预处理好了,现在是二维图像切片,坐标是YOLO格式,可用于小目标检测,相关资源网上已经开源但是很多假货,我预处理后图片像素一样,坐标位置准确,可放心使用,前期下载时我也栽了很多坑,所以不想坑人,不昧良心,如果资源有问题及时联系我,感谢各位! Luna2016肺结节数据集(已预处理适用于YOLO)是一个专门针对肺部小结节进行识别和定位的数据集,它源自LUNA16数据集,即肺部结节分析挑战(Lung Nodule Analysis 2016)的数据集。这个挑战主要关注的是如何高效准确地在肺部CT扫描图像中检测出小结节,这对于早期诊断肺癌具有重要的意义。数据集的预处理工作是将原始的CT扫描图像转化为二维图像切片,并且标注了每个肺结节的YOLO格式坐标。YOLO,即You Only Look Once,是一种快速且准确的目标检测算法,它能够实时地从图像中检测出多个对象。因此,这个数据集非常适合用于训练和测试基于YOLO算法的肺结节检测模型。 由于LUNA16数据集的原始资料在网上容易遇到各种版本,包括一些错误或不完整的数据,导致研究者在寻找合适的数据资源时可能遇到难题。为了解决这一问题,发布者已经对LUNA16数据集进行了预处理,并且对图像像素和坐标进行了校准,确保了数据的质量和准确性。这样,使用者在使用这个数据集时就可以更加安心,不必担心数据错误对研究和开发工作造成的干扰。发布者还特别强调,如果在使用这个数据集过程中遇到任何问题,可以及时与他联系,表现出了一种负责任的态度和对研究工作的支持。 此外,Luna2016肺结节数据集(已预处理适用于YOLO)的标签包括“Luna16”,“YOLO”,“数据集”和“肺结节”,这些都是与人工智能和计算机视觉领域相关的关键词。这也意味着该数据集旨在服务于那些研究医学影像分析、计算机视觉及深度学习技术的开发者和研究人员。利用这个数据集,他们可以更好地训练和验证他们的算法,尤其是针对肺结节检测的小目标检测能力。 在实际应用中,这个数据集能够帮助开发者和研究人员构建更加精确的肺结节检测模型,这些模型可以用于医疗图像分析工具中,辅助放射科医生和其他医学专业人士进行疾病诊断。由于肺结节通常体积较小,且在CT图像中可能不易被肉眼识别,因此,能够准确快速地检测出这些结节对于早期发现和治疗肺部疾病至关重要。随着人工智能技术的不断进步,利用机器学习和深度学习技术进行肺结节检测已经展现出巨大的潜力和应用前景。 Luna2016肺结节数据集(已预处理适用于YOLO)提供了一个高质量、经过严格校准的数据资源,它不仅能够推动人工智能在医学影像分析领域的应用发展,同时也为相关领域的研究者提供了一个可靠的工作平台,帮助他们在肺结节检测这个重要课题上取得更深入的研究成果。通过这个数据集的使用,医学影像分析将更加精确和高效,有望在未来的临床应用中发挥出重要作用。
2025-04-10 16:56:56 107.06MB Luna16 YOLO 数据集 人工智能
1
ROMS(Regional Ocean Modeling System,区域海洋模型系统)是一种广泛使用的开源海洋模型,用于模拟海洋流动、温度、盐度等海洋物理过程。本资源提供的工具包是基于MATLAB的ROMS预处理和后处理工具,这将极大地简化对ROMS模型数据的操作和分析流程。 在MATLAB环境中开发这样的工具包,主要是因为MATLAB提供了丰富的数值计算和可视化功能,适合进行复杂的数据处理和图形展示。以下是这个工具包可能包含的一些核心功能和知识点: 1. **数据预处理**: - **网格生成**:ROMS模型需要特定的网格结构来定义海洋区域。工具包可能包括功能,如读取网格文件,检查和修正网格质量,以及生成适合ROMS模型的地形和 bathymetry 数据。 - **边界条件设定**:预处理工具可能包含设置开放边界条件、陆地边界条件的功能,这些条件对模型的准确性和稳定性至关重要。 - **初始条件处理**:根据历史观测数据或其它模型结果,生成ROMS模型的初始场,如温度、盐度分布。 - **强迫项设置**:如风应力、淡水输入等,这些都是影响海洋流动的重要因素。 2. **模型运行准备**: - **脚本生成**:工具包可能会自动生成运行ROMS模型所需的输入脚本,如fortran代码,以减少用户手动编写的工作量。 - **参数调整**:提供参数调整界面,帮助用户优化模型设置,如时间步长、垂直层结构等。 3. **数据后处理**: - **数据读取与转换**:工具包可能包含读取ROMS输出文件的函数,将二进制格式转换为MATLAB可处理的格式。 - **数据分析**:提供统计分析功能,如平均值、趋势分析、异常值检测等,以评估模型性能。 - **可视化**:生成二维和三维海洋流场、温度、盐度等分布图,以及时间序列图,帮助用户直观理解模型结果。 - **动画制作**:创建动态动画,展示海洋变化的过程。 4. **交互界面**: - 通过MATLAB GUI(图形用户界面)设计,用户可以通过直观的界面操作工具包,而无需深入理解ROMS模型的内部工作原理。 5. **用户文档**: - 工具包应包含详细的用户手册和教程,介绍如何使用各个功能,解决常见问题,以帮助用户快速上手。 基于MATLAB的ROMS预处理、后处理工具包是一个强大的辅助工具,它简化了ROMS模型的使用,使科学家和研究人员能更专注于模型的应用和解释,而不是繁琐的数据处理。通过掌握这个工具包,用户能够高效地进行海洋环境模拟研究,提升科研效率。
2025-03-31 10:46:28 15KB
1
交通数据预处理是智能交通系统(ITS)中的一项关键技术,它直接影响到交通管理和控制模型的有效性和准确性。本文探讨了在实际应用中如何有效地进行交通数据的预处理,尤其是在大量数据缺失和异常存在的条件下。以下详细阐述了交通数据预处理的关键知识点。 一、采样间隔对数据的影响 在进行交通数据预处理时,首先要考虑采样间隔的影响。交通流作为一个复杂的离散随机系统,其观测依赖于采样间隔的设置。过短的采样间隔会增加检测误差,而过长的间隔则无法准确捕捉交通流的时间变化特性。因此,确定适当的采样间隔对于保证数据质量至关重要。学者们研究了不同采样间隔下的流量变化规律,发现随着采样间隔的增加,数据的波动性减弱,离散程度降低。 二、数据筛选方法 为了从车辆检测器收集到的大量交通数据中有效筛选出错误数据,本研究提出了一个四步骤的数据筛选方法。这种方法考虑到了交通数据的特性,能够从大量数据中准确剔除掉错误信息,从而确保输入数据的完整性和有效性。 三、数据恢复方法 由于存在数据缺失和异常问题,仅靠筛选方法是不够的。因此,研究者们还提出了四种不同条件下的数据恢复方法。这些方法通过填补数据缺失的部分,纠正异常值,从而提高了数据的可用性。数据恢复的具体方法根据数据的丢失程度和可用信息的差异而有所不同。 四、多元质量控制 在交通数据预处理中,多元质量控制机制是确保数据质量的关键步骤。它综合了多种技术手段,对数据进行全方位的质量检查。本文提出了一个多元质量控制方案,这有助于进一步提高数据预处理的精度和稳定性。 五、数据平滑处理 在实际的交通数据中,由于随机噪声和不规则因素的影响,数据往往表现出一定的波动性。为了提高数据的可分析性,本文采用Tukey平滑方案对数据进行了平滑处理。这种平滑方法通过构造中位数序列来消除异常值的影响,得到更为准确的流量数据。 六、标准数据预处理流程 为了使得交通数据预处理工作能够标准化,本文建立了一个标准的数据预处理流程。这个流程考虑了实际工程应用的需求,能够使数据预处理工作更加系统化、规范化。 七、实际验证与评估 通过对北京快速路实际数据的验证,本研究提出的算法显示出高精度、实时性和稳定性。这表明该预处理方法能够满足工程实际应用的需求,为后续的交通管理和控制提供了坚实的数据支持。 总结来说,交通数据预处理是一个涉及数据筛选、恢复、平滑处理和多元质量控制等多方面技术的复杂过程。本文研究为这一领域提供了详尽的理论与实际应用方法,对于提高交通数据处理的准确性和有效性具有重要意义。通过合理的预处理方法,可以为智能交通系统提供更加准确可靠的决策支持,从而更好地服务于城市交通的管理和规划。
2025-03-26 15:54:14 384KB 首发论文
1