基于SLMP算法的MATLAB水下传感器网络定位仿真研究——参考IEEE Transactions文章的可扩展移动预测定位技术,【6】MATLAB仿真 水下传感器网络定位,SLMP算法,有参考文档。 主要参考文档: 1. Scalable Localization with Mobility Prediction for Underwater Sensor Networks,IEEE Transactions on Mobile Computing 主要供文档方法的学习 非全文复现。 ,MATLAB仿真;水下传感器网络定位;SLMP算法;参考文档;可扩展性定位;移动预测。,MATLAB仿真:水下传感器网络定位的SLMP算法研究
2025-05-03 11:04:35 878KB
1
这是年龄性别预算识别Android APP Demo,只安装在安卓手机,实时检测和识别 年龄性别预测1:年龄性别数据集说明(含下载地址)https://blog.csdn.net/guyuealian/article/details/135127124 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)https://blog.csdn.net/guyuealian/article/details/135556789 年龄性别预测3:Android实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556824 年龄性别预测4:C/C++实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556843
2025-05-01 20:46:35 45.75MB android 年龄预测 年龄估计 性别识别
1
GA(遗传算法)优化BP(反向传播)神经网络预测是一种将遗传算法与BP神经网络结合的优化方法,旨在提高神经网络的预测性能。BP神经网络通过反向传播算法调整权重和偏置,以最小化误差,但该算法容易陷入局部最优解,特别是在复杂的非线性问题中。遗传算法是一种模拟自然选择和遗传学原理的优化算法,通过选择、交叉、变异等操作在解空间中搜索最优解。 ### 结合过程: 1. **编码与初始化**:将BP神经网络的权重和偏置参数编码成染色体(即遗传算法的个体),初始化一群个体,构成初始种群。 2. **适应度评估**:使用BP神经网络进行预测,计算每个个体的适应度,通常是通过误差值(如均方误差)来衡量。 3. **选择、交叉与变异**:通过选择操作保留适应度高的个体,交叉操作生成新个体,并通过变异操作引入新的可能解,形成新的种群。 4. **进化与优化**:迭代进行选择、交叉、变异操作,不断优化种群中的个体,直到满足预定的停止准则,如达到最大迭代次数或误差达到某一阈值。 5. **训练优化**:最终选择适应度最好的个体作为BP神经网络的权重和偏置,完成网络的训练。
1
以新疆红富士苹果为研究对象,探讨应用高光谱图像技术和最小外接矩形法预测其大小的研究方法。提取苹果高光谱图像中可见红色区域受色度影响较小的713nm以及近红外区域793和852nm的3个波长图像,做双波段比运算处理。比较所得双波段比图像可知,852/713双波段比图像中背景和前景灰度对比度最大。对该图像做阈值分割以及形态闭运算去除果梗区域,使用8邻接边界跟踪法得到二值图像的轮廓坐标序列,采用最小外接矩形法求苹果的大小,与实测值建立回归方程。结果表明,基于高光谱图像技术采用波段比算法,结合最小外接矩形法,能够有效地检测苹果大小,预测值与实际值最大绝对误差为3.06mm,均方根误差为1.21mm。
2025-04-29 18:04:53 359KB 最小外接矩形
1
内容概要:本文详细介绍了如何利用改进版蛇优化算法(GOSO/ISO)优化XGBoost的回归预测模型。首先,通过混沌映射初始化种群,使初始解更加均匀分布,避免随机初始化的局限性。其次,采用减法优化器改进位置更新公式,增强算法的勘探能力和收敛速度。最后,加入反向学习策略,帮助算法跳出局部最优解。文中提供了详细的MATLAB代码实现,涵盖混沌映射、减法优化器、反向学习以及XGBoost参数调优的具体步骤。此外,还讨论了多种评价指标如MAE、MSE、RMSE、MAPE和R²,用于全面评估模型性能。 适合人群:具备一定机器学习和MATLAB编程基础的研究人员和技术开发者。 使用场景及目标:适用于需要高效调优XGBoost参数的回归预测任务,特别是在处理复杂非线性关系的数据集时。目标是提高模型的预测精度和收敛速度,减少人工调参的时间成本。 其他说明:文中提到的方法已在多个数据集上进行了验证,如电力负荷预测、混凝土抗压强度预测等,取得了显著的效果提升。建议读者在实践中结合具体应用场景调整参数范围和混沌映射类型。
2025-04-29 16:28:37 4.12MB
1
### 预测PID控制 #### 一、研究背景与目的 随着现代工业技术的不断发展,对于自动控制系统的性能提出了更高的要求。特别是针对那些多变量、非线性、时变性强耦合且不确定性的工业过程,传统的控制策略往往难以满足实际需求。在此背景下,结合了预测控制与PID控制优点的预测PID控制成为了研究热点之一。本研究旨在探索一种新型的预测PID控制器设计方法,以提高控制系统的稳定性和响应速度,同时降低超调现象。 #### 二、预测PID控制器设计原理 ##### 1. 动态矩阵控制(DMC)概述 动态矩阵控制是一种典型的预测控制算法,它具有以下三个核心特征: - **预测模型**:用于预测未来输出值的数学模型。 - **滚动优化**:在每个采样时刻,根据当前状态计算未来的控制序列,并仅执行第一步的控制动作。 - **反馈校正**:通过实时测量值与预测值之间的偏差来调整预测模型,从而实现闭环控制。 预测模型的数学表达式如下: \[ y_m(k+1) = A_a V(k) + A_{a-1} V(k-1) \] 其中,\( y_m(k+1) \) 表示未来输出向量;\( AU(k) \) 代表待求的控制增量向量;\( U(k-1) \) 是最优控制输入向量;\( A_a, A_{a-1} \) 等为模型参数。 ##### 2. 预测PID控制算法融合 为了更好地结合预测控制与PID控制的优点,本研究采用了LabVIEW中的Matlab Script Node模块,将基于Matlab语言实现的预测控制器嵌入到LabVIEW流程图中,实现了混合编程。这种方式不仅可以利用LabVIEW强大的图形化编程环境,还能发挥Matlab在数学建模和计算方面的优势。 预测PID控制的核心在于如何利用预测模型来改进PID控制器的性能。具体而言,可以通过预测模型提前预知系统未来的变化趋势,进而调整PID参数,达到更好的控制效果。例如,当预测到系统可能会出现较大的超调时,可以通过减小比例系数(P)或增加微分时间(D)来抑制这一现象。 #### 三、实验模型与案例分析 ##### 1. 单容自衡液位控制模型 单容自衡液位控制模型是指一个简单的液位控制系统,主要由一个容器(水箱)组成,容器的液位受到输入流量和输出流量的影响。该模型可以用以下动态方程描述: \[ \frac{d}{dt} h(t) + \frac{1}{R_0} h(t) = \frac{K_0}{R_0} q_i(t) \] 其中,\( R_0 \) 为液阻,\( K_0 \) 为比例系数,\( q_i(t) \) 为输入流量,\( h(t) \) 为液位高度。 ##### 2. 双容自衡液位控制模型 双容自衡液位控制模型是在单容模型基础上增加了另一个容器,使得系统更加复杂。该模型可以通过以下动态方程描述: \[ \begin{aligned} & \frac{d}{dt} h_1(t) + \frac{1}{R_1} h_1(t) = \frac{K_1}{R_1} q_i(t) - \frac{K_2}{R_2} h_2(t) \\ & \frac{d}{dt} h_2(t) + \frac{1}{R_2} h_2(t) = \frac{K_2}{R_2} h_1(t) - \frac{K_3}{R_3} q_o(t) \end{aligned} \] 其中,\( R_1, R_2, R_3 \) 分别表示两个容器的液阻以及出口液阻;\( K_1, K_2, K_3 \) 为相应的比例系数;\( h_1(t), h_2(t) \) 为两个容器的液位高度;\( q_i(t), q_o(t) \) 分别为输入流量和输出流量。 ##### 3. 实验结果与讨论 实验结果显示,预测PID控制算法能够有效抑制系统的超调现象,并且提高了系统的稳定性和响应速度。相比于传统的PID控制,预测PID控制在处理复杂多变的工业过程时表现出了更好的鲁棒性和适应性。此外,通过LabVIEW与Matlab的混合编程方式,不仅简化了程序的开发流程,还提高了控制系统的灵活性和可扩展性。 #### 四、结论 预测PID控制作为一种结合了预测控制与PID控制优点的新型控制策略,在处理复杂的工业过程控制问题时展现出了显著的优势。通过本研究提出的混合编程方案,不仅实现了预测PID控制的有效实施,还为未来进一步的研究和发展奠定了基础。未来的工作可以进一步探索更多类型的预测模型以及更广泛的工业应用场景,以期推动预测PID控制技术的发展与应用。
2025-04-29 10:00:26 363KB LabVIEW Matlab
1
MMC整流器仿真模型:环流抑制与排序算法均压方法的预测控制仿真研究(基于Matlab Simulink平台),MMC整流器仿真模型 MMC模型预测控制仿真 基于Matlab Simulink仿真平台 模型中包含环流抑制控制器 模型中添加基于排序算法的子模块均压方法 采用基于最近电平逼近NLM的调制策略 1.仿真均能正常运行,能够准确跟踪对应参考值 2.最近电平逼近调制+基于排序算法的均压策略 3.二倍频环流抑制控制 供MMC入门新学者学习参考。 ,核心关键词:MMC整流器仿真模型; MMC模型预测控制仿真; Matlab Simulink仿真平台; 环流抑制控制器; 排序算法的子模块均压方法; 最近电平逼近NLM调制策略; 仿真均能正常运行; 准确跟踪参考值; 二倍频环流抑制控制; MMC入门新学者学习参考。,MMC整流器仿真模型入门:预测控制与均压策略研究
2025-04-27 20:58:38 93KB sass
1
气象数据集 该气象数据集包含了多个城市和地区的天气信息,包括温度、降水量、风速、湿度等多个气象变量。每一行代表一天的气象数据,记录了不同的气象参数以及是否有降水等信息。该数据集适用于分析和预测气象趋势、极端天气条件、天气变化模式等方面。字段说明: 字段 说明 Date 日期,记录当天的气象数据日期 Location 地点,记录测量气象数据的地点 MinTemp 最低温度,记录当天的最低气温 MaxTemp 最高温度,记录当天的最高气温 Rainfall 降水量,记录当天的降水量(单位:毫米) Evaporation 蒸发量,记录当天的蒸发量(单位:毫米) Sunshine 日照时长,记录当天的日照时长(单位:小时) WindGustDir 风速阵风方向,记录当天阵风的方向 WindGustSpeed 风速阵风速度,记录当天阵风的最大速度(单位:km/h) WindDir9am 9点风速方向,记录上午9点的风速方向 WindDir3pm 3点风速方向,记录下午3点的风速方向 WindSpeed9am 9点风速,记录上午9点的风速(单位:km/h) WindSpeed3pm 3点风速,记录
2025-04-26 21:27:15 12.01MB 数据集
1
针对具有强非线性、时变、有纯滞后等综合复杂性的连续搅拌釜(continuous stirred tank reactor, CSTR)反应过程,把无限时域鲁棒二次目标函数进行分解,构成新目标函数, 并允许未来控制序列的第 1 个控制量作为自由决策变量的方式,提出了一种非线性鲁棒模 型预测控制方法,从而提高了算法的通用性,改善系统的性能。通过连续搅拌釜的实验研 究,实验结果说明了所提算法的有效性。 ### 连续搅拌釜的非线性模型预测控制方法 #### 概述 连续搅拌釜(Continuous Stirred Tank Reactor, CSTR)是化工行业中一种常见的反应器类型,被广泛应用于染料、医药、试剂、食品及合成材料等多个领域。然而,CSTR反应过程本身具有强烈的非线性、时变性和纯滞后等特征,这些特性使其控制变得极为复杂。传统控制方法往往难以满足这类系统的控制需求。因此,研究人员不断探索新的控制理论和技术以提高CSTR系统的稳定性和性能。 #### 非线性鲁棒模型预测控制方法 为了解决CSTR控制中的难题,研究人员提出了一种非线性鲁棒模型预测控制方法。该方法通过对无限时域鲁棒二次目标函数进行分解,并构建新的目标函数,允许未来控制序列的第一个控制量作为自由决策变量,从而提高了算法的通用性和系统的性能。这种方法的核心在于: 1. **鲁棒二次目标函数的分解**:将原本复杂的无限时域鲁棒二次目标函数分解成更简单的目标函数,这有助于简化计算过程,同时保持控制器设计的鲁棒性。 2. **自由决策变量的设计**:允许未来控制序列的第一个控制量作为自由决策变量,这种灵活性增强了控制策略的适应能力,能够更好地应对非线性、时变性和纯滞后等因素带来的挑战。 #### 控制策略的关键要素 - **模型预测控制**:基于预测模型来优化控制序列,使得系统能够在满足约束条件的前提下达到期望的性能指标。这种方法特别适合于处理包含约束的系统。 - **鲁棒控制**:旨在设计控制器时考虑不确定性和扰动,确保系统在面对未知变化时仍能保持稳定性。对于具有不确定性的CSTR系统而言,鲁棒控制尤为重要。 - **非线性控制**:针对系统的非线性特性,采用非线性控制策略来改善控制性能。这种方法通常比线性控制更加灵活且适用范围更广。 #### 实验验证 为了验证所提出的非线性鲁棒模型预测控制方法的有效性,研究人员进行了连续搅拌釜的实验研究。实验结果表明,这种方法能够有效地提高CSTR系统的性能,特别是在处理强非线性、时变性和纯滞后等复杂因素方面表现出了显著的优势。 #### 结论 针对具有复杂特性的连续搅拌釜反应过程,本文提出了一种非线性鲁棒模型预测控制方法。通过分解无限时域鲁棒二次目标函数并引入自由决策变量,该方法不仅提高了控制策略的通用性和灵活性,还有效改善了系统的整体性能。实验结果进一步证明了该方法的有效性和实用性,为CSTR系统的控制提供了一种新的解决方案。 随着化工过程控制技术的不断发展,非线性鲁棒模型预测控制作为一种先进的控制策略,将在解决复杂工业控制系统中的问题中发挥越来越重要的作用。
2025-04-26 16:47:01 494KB
1
内容概要:本文详细介绍了利用HYDRUS1D进行土壤污染物垂直入渗模拟的方法和技术要点。首先解释了HYDRUS1D的基本设定,如配置文件Selector.in中的关键参数(TPrint、Mat、hCritA等),并强调了正确设置这些参数对于确保模型准确性的重要性。接下来讨论了网格划分策略,指出采用指数增长剖分能够有效提高计算效率而不损失精度。随后深入探讨了污染物参数的精确设置,尤其是吸附系数Kd、降解速率和阻滞因子的选择依据及其对模拟结果的影响。此外,文中还分享了一些实用的操作技巧,如使用Python脚本批量修改参数、通过质量平衡误差评估模型可靠性以及运用可视化工具展示模拟结果。最后,作者结合实际案例,讲述了如何应对复杂地质条件下污染物迁移预测挑战的经验。 适合人群:从事环境评价、土壤污染治理及相关领域的科研人员和工程师。 使用场景及目标:帮助用户掌握HYDRUS1D软件的具体应用,特别是在处理土壤污染物迁移问题时提供指导和支持,旨在提升模拟预测的准确性和效率。 其他说明:文章不仅提供了理论知识,还包括大量具体实例和代码片段,便于读者理解和实践。同时提醒使用者关注细节,如参数敏感性分析和模型验证,以确保最终结果的可靠性和实用性。
2025-04-26 16:39:42 504KB
1