本数据集来自中国新疆哈密地区某风电场,涵盖2019年全年(1月1日至12月31日)的风电及相关气象信息,数据由现场传感器每15分钟采样一次,共计 35,040 条记录,具有高时间分辨率和多维度特征,适用于短期风电预测、时间序列建模、多变量回归等研究场景。 在能源领域,特别是在风能的开发利用中,准确预测风电功率对于提高风电场的运营效率和效益至关重要。新疆地区,作为中国风能资源丰富的区域之一,具备建立风电站得天独厚的地理条件。本数据集便是来源于中国新疆哈密地区的一处风电场,它收集了该风电场在2019年全年的风电功率数据以及相关气象信息,为风电功率预测提供了宝贵的第一手资料。 数据集的详细信息显示,其包含了35,040条记录,时间跨度为一年,每15分钟采集一次数据,这保证了数据具有较高的时间分辨率。这些数据不仅关注风电功率本身,而且包括了风速、风向、温度、气压等气象要素。由于风电功率受多种气象条件的影响,这些多维度的特征数据为进行数据分析和模型建立提供了充足的变量。 在数据集的应用层面,它不仅适用于短期风电预测,还能够广泛应用于时间序列分析、多变量回归分析等先进的数据分析场景。这为机器学习、深度学习等领域的研究者和工程师提供了实验和探索的平台。通过对这些数据的分析和学习,可以建立有效的预测模型,从而实现对风电功率变化趋势的准确预测,这有助于风电场管理者做出更科学的发电调度决策,提高风电发电的稳定性和经济性。 此外,这些数据还可以被用来评估和优化风力发电机组的性能,指导风力发电设备的设计和维护工作,甚至为电力市场的交易策略提供数据支持。因此,该数据集不仅在学术研究中具有重要价值,同样在风电行业的实际生产运营中也具有极大的应用前景。 对于技术人员和研究者而言,这种高精度、高时间分辨率的风电数据集是十分珍贵的资源。通过挖掘这些数据,不仅可以提升风电场的发电效率,还可以推动新能源技术的进步,为实现绿色能源的可持续发展贡献力量。 总体而言,这份来自新疆哈密风电站的风电功率预测数据集,为风电行业研究者提供了一个极具价值的数据源,促进了风电功率预测技术的发展,并为新能源的高效利用和智慧能源管理提供了科学依据。
2025-12-17 16:51:16 2.88MB 数据集 机器学习 深度学习
1
为了有效地感知物联网环境下的网络安全状况,提出了一种基于免疫的物联网环境安全态势感知(IIESSA)模型。 在IIESSA中,给出了关于自身,非自身,抗原和检测器的一些正式定义。 根据记忆检测器抗体浓度与网络攻击活动强度之间的关系,提出了基于人工免疫系统的物联网环境下安全态势评估方法。 然后根据上述评估方法获得的态势时间序列,提出了一种基于灰色预测理论的安全态势预测方法,用于预测下一步物联网环境将遭受的网络攻击活动的强度和安全态势。 实验结果表明,IIESSA为感知物联网环境的安全状况提供了一种新颖有效的模型。
1
这是一个涵盖物流配送信息的数据集,包含837条记录,涉及Delhivery、FedEx、DHL、Blue Dart、Amazon Logistics等多个物流合作伙伴的包裹配送情况。数据集内容丰富,详细记录了各类配送属性,包括包裹类型(如电子产品、食品杂货、文件、易碎品等)、交通工具类型(如自行车、摩托车、货车、卡车,含电动车型)、配送模式(当日达、快递、两天达、标准配送)、地理区域、天气状况、配送距离、包裹重量及成本指标等。此外,还包含配送状态(已送达、延迟、失败)、客户评分(1 - 5级)以及实际与预期配送时间的对比等性能指标。 不过,该数据集存在一些问题,需要进行数据清洗。例如,时间戳格式有误,出现了占位符1970日期;配送标识符不一致;还有一条不完整的最终记录。尽管如此,这个数据集仍具有很高的研究价值。通过对它进行分析,可以从多个维度评估配送绩效,如分析不同承运人的效率、各区域的运营情况、天气对配送的影响、成本结构以及客户满意度等。这些分析结果能为电子商务和供应链运营中的物流优化及服务质量提升提供重要参考和宝贵见解,助力相关企业更好地制定策略,提高运营效率和服务水平。
2025-12-14 21:36:07 563KB 机器学习 预测模型
1
在I型跷跷板模型中,轻质香料混合矩阵(Pontecorvo-Maki-Nakagawa-Sakata矩阵)和夸克风味混合矩阵[Cabibbo-Kobayashi-Maskawa(CKM)矩阵]可以通过 中微子狄拉克·汤川耦合YD和夸克汤河耦合之间的关系。 在本文中,我们研究YD是否可以满足-在带电轻子Yukawa和右旋中微子Majorana质量矩阵对角线的风味基础上,关系YD∝diag(yd,ys,yb)VCKMT或YD∝diag(yu ,yc,yt)VCKM *,而不会与夸克和中微子振荡的当前实验数据相矛盾。 我们搜索中微子狄拉克CP相δCP,马约拉那相α2,α3和最轻的活跃中微子质量的值集合,这些值满足中微子质量的正常或倒置层次关系。 在执行搜索时,我们考虑了夸克质量和CKM矩阵的重归一化组演化以及它们沿该演化的实验误差的传播。 我们发现只有具有正常中微子质量等级的前一个关系YD∝diag(yd,ys,yb)VCKMT成立,在此基础上我们可以预测δCP,α2,α3和最轻的活动中微子质量。
2025-12-12 20:06:05 1.21MB Open Access
1
叠前同时反演进行岩性识别及流体预测技术浅析,王晓伟,孙利华,基于全角度多次叠加地震资料的常规纵波阻抗反演方法,在预测火山岩等某些岩性油气藏和隐蔽油气藏时,由于储层和非储层阻抗值域重
2025-12-11 19:53:32 395KB 首发论文
1
内容概要:本文详细介绍了一个基于MATLAB实现的自回归移动平均模型(ARMA)用于股票价格预测的完整项目实例。项目涵盖从数据获取、预处理、平稳性检验、模型阶数确定、参数估计、模型拟合与残差分析,到样本外预测、结果可视化及模型优化的全流程。重点阐述了ARMA模型在金融时间序列预测中的应用,结合MATLAB强大的计算与绘图功能,系统展示了如何应对股票数据的高噪声、非平稳性、过拟合等挑战,并提供了部分代码示例,如差分处理、AIC/BIC阶数选择、残差检验和预测误差计算等,帮助读者理解和复现模型。项目还强调了模型的可扩展性与自动化实现能力,为后续引入ARIMA、GARCH或多元模型奠定基础。; 适合人群:具备一定统计学基础和MATLAB编程经验,从事金融数据分析、量化投资、风险管理等相关工作的研究人员、学生及从业人员(尤其是工作1-3年的初级至中级数据分析师或金融工程师)。; 使用场景及目标:① 掌握ARMA模型在股票价格预测中的建模流程与关键技术细节;② 学习如何利用MATLAB进行金融时间序列分析与可视化;③ 构建可用于量化交易策略开发、投资决策支持和风险预警的预测模型;④ 为深入学习更复杂的时序模型(如ARIMA、GARCH、LSTM)打下实践基础。; 阅读建议:建议结合文中提供的代码片段与完整项目文件(如GUI设计、详细代码)同步运行和调试,重点关注数据预处理、平稳性检验与模型阶数选择等关键步骤,并尝试在不同股票数据上复现实验,以加深对模型性能与局限性的理解。
1
内容概要:本文档介绍了在MATLAB平台上实现自回归移动平均模型(ARMA)的时间序列预测方法及其具体实现步骤。文中详细阐述了ARMA模型的基本概念、应用场景和优势,并提供了完整示例代码。主要内容涵盖时间序列数据处理、ARMA模型的选择与构建、模型参数估计及优化,还包括完整的预测与结果可视化展示,以及模型的有效性验证。此外,文档列举了该模型在金融市场、能源管理、气象预报等多个领域的广泛应用。 适用人群:对时间序列分析感兴趣的研究人员及工程师;熟悉MATLAB并且有志于深入了解或应用ARMA模型进行预测工作的专业人士。 使用场景及目标:本教程适用于所有希望用MATLAB来进行时间序列数据分析的人群。通过学习本课程,学员不仅可以掌握ARMA模型的工作原理,还能将其运用到实际工作中去解决具体问题。 其他说明:ARMA是一种常见的统计方法,在许多学科都有重要用途。然而,在某些情况下,时间序列可能是非线性的或带有突变点,这时可能需要考虑扩展模型,比如ARIMA或ARCH/GARCH族等,以达到更好效果。
2025-12-11 16:16:24 34KB ARMA模型 MATLAB System Identification
1
《气候变化2038:基于历史数据的机器学习预测分析》 全球气候变暖是当前世界面临的重大挑战之一。为了预测未来的气候变化趋势,科学家们利用各种数据和工具进行深入研究。在“Climate_change_2038”项目中,研究人员对比了1993年至2015年间的温度、海平面、二氧化碳排放量和人口数据,通过机器学习算法预测了温度上升至16.37℃的时间节点。 该项目采用Python编程语言进行数据处理和分析,这是数据分析领域广泛使用的工具,拥有丰富的库和模块支持。其中,`scikit-learn`库是一个强大的机器学习工具箱,它包含多种预处理方法、模型选择和评估工具,以及多种回归算法,如线性回归、决策树、随机森林等,可用于预测温度变化。 `jupyter-notebook`是一个交互式的工作环境,它允许研究人员编写、运行和展示代码,以及创建具有文本、图像和代码的综合报告,使得数据分析过程更加透明且易于分享。在这个项目中,`jupyter-notebook`可能被用来展示数据可视化和模型训练过程。 数据可视化方面,`matplotlib`库是一个不可或缺的工具,它提供了绘制2D图形的功能,可以用于绘制温度、海平面、二氧化碳排放量等随时间变化的趋势图。同时,`tableau`是一款强大的数据可视化软件,它能创建复杂的数据仪表板,帮助用户更好地理解数据和模型预测结果。 在模型构建过程中,`prophet-model`是一个由Facebook开源的时间序列预测框架,特别适合处理季节性和趋势性数据。在本项目中,它可能被用来建立温度预测模型,考虑到温度变化的周期性和长期趋势。 此外,项目还提到了`scikit-learnJupyterNotebook`,这可能是项目代码的特定部分或者是一个自定义的库,用于整合`scikit-learn`的功能,并在Jupyter Notebook环境中进行操作。 通过这个项目,我们可以看到数据科学在解决复杂问题上的力量。通过收集历史数据、构建预测模型,并利用机器学习算法,研究人员能够对未来的气候变化趋势做出科学的预测。这样的工作对于制定应对策略,减少全球变暖的负面影响至关重要。随着技术的发展,我们可以期待更精确的预测和更有效的解决方案,以应对这个全球性的挑战。
2025-12-11 15:21:20 92.76MB python scikit-learn jupyter-notebook regression
1
华北型煤田奥灰常规地震解释受分辨率制约对隔水层解释具有局限性。采用基于模型的波阻抗反演方法,提高了原有地震剖面的分辨率,有效解释了奥陶系含隔水层的顶、底界面。研究表明,波阻抗反演技术可以确定奥陶系顶部隔水层的分布特征,为保水采煤和区域注浆改造提供重要依据,为煤矿防治水害工作提供了可靠保障。
2025-12-10 18:27:24 326KB 行业研究
1
针对滨里海盆地东缘M区块石炭系碳酸盐岩缝洞型储层的精细预测问题,开展了基于三维叠前地震数据的AVO反演技术应用研究,重点论述了岩石物理分析、敏感弹性参数验证、多参数综合分析等关键技术环节。基于三维叠前地震资料,利用叠前地震资料对油气检测的敏感性更强的特点,以工区内的实际井统计资料为基础,结合岩石物理参数分析,建立岩石物理模型,分析孔洞型碳酸盐岩储层的流体敏感性特征。通过叠前AVO反演技术,反演出多种岩石物理参数(纵、横波阻抗、密度和杨氏模量等),进行多参数综合分析储层预测,同时借助裂缝检测技术进行论证,成功预测了储层发育带。经过实测钻井资料验证,多参数分析结果与工区内井的吻合程度很高。
1