内容概要:本文探讨了分布式鲁棒优化(DRO)在处理电力系统中风光发电不确定性的问题。文中介绍了利用Wasserstein距离构建模糊不确定集的方法,通过MATLAB、Yalmip和Cplex进行仿真,实现了含风、光、水、火多种能源的分布鲁棒动态最优潮流模型。该模型能够在满足风光预测误差服从模糊不确定集内的极端概率分布情况下,最小化运行费用,从而提高系统的鲁棒性和经济性。 适合人群:从事电力系统研究、优化算法开发的研究人员和技术人员,以及对分布式鲁棒优化感兴趣的学者。 使用场景及目标:适用于需要处理风光发电不确定性的电力系统优化场景,目标是提升系统的鲁棒性和经济性,确保大规模清洁能源接入电网后的稳定运行。 其他说明:文中提供了详细的代码示例,展示了如何定义变量、构建模糊不确定集、设置目标函数和约束条件,并最终求解模型。此外,还讨论了选择合适的Wasserstein距离半径的重要性及其对模型性能的影响。
2025-08-17 15:58:54 317KB
1
内容概要:本文详细介绍了基于刘一欣教授提出的微电网两阶段鲁棒优化经济调度方法的复现过程。首先,通过Pyomo建模框架搭建了双层优化结构,将不确定性(如光伏和风机出力波动、负荷变化)纳入数学模型。文中展示了如何利用盒式不确定集和多面体集合来处理风光出力的不确定性,并通过列与约束生成(C&CG)算法解决主问题和子问题之间的迭代优化。此外,文章探讨了储能系统与需求响应负荷的协同控制策略,以及如何通过动态调整充放电阈值提高系统的稳定性和经济性。最后,通过对实际案例的数据验证,证明了鲁棒优化方法在极端场景下的优越性能。 适合人群:从事电力系统研究、微电网调度优化的研究人员和技术人员,尤其是对鲁棒优化感兴趣的学者。 使用场景及目标:适用于需要处理风光出力波动和负荷突变的微电网调度场景,旨在提高系统的鲁棒性和经济性,确保在不确定条件下仍能保持稳定的电力供应。 其他说明:文章不仅提供了详细的理论推导和代码实现,还分享了许多实际调试的经验教训,帮助读者更好地理解和应用这一先进的调度方法。
2025-08-06 17:20:06 1.15MB
1
电气热综合能源鲁棒优化程序:二阶锥模型约束下的多能流分段线性化研究与应用,电气热 综合能源 鲁棒优化 二阶锥 采用matlab编制含电气热的综合能源鲁棒优化程序,采用yalmip和cplex求解,通过二阶锥模型实现相关约束限制,综合能源系统考虑39节点电网+6节点气网+热网模型,程序注释清楚,易于理解,可或讲解 电气热综合能源潮流,分段线性化,二阶锥松弛,适合在此基础上做东西。 ,电气热综合能源;鲁棒优化;二阶锥模型;综合能源系统;节点电网热网模型,Matlab实现综合能源鲁棒优化二阶锥模型程序
2025-06-10 20:07:34 860KB istio
1
鲁棒优化是数学优化领域的一个分支,旨在找到在最坏情况下依然表现良好的解决方案。鲁棒优化模型通常考虑参数的不确定性,确保优化结果即使面对数据波动或预测错误,也能保持一定的性能水平。这种优化方法特别适用于实际问题中,由于各种不确定因素导致参数无法精确预知的情况。 鲁棒优化的关键在于如何构建一个能够抵御不确定性的优化模型。一般来说,鲁棒优化问题的建模包括确定优化的决策变量、目标函数以及约束条件。在不确定性环境下,模型中的参数可能无法准确获得,因此需要通过定义参数的不确定性集合来构建鲁棒优化问题。常见的方法是设定参数的不确定性范围,如区间不确定性或概率分布不确定性,以此来保证在这些不确定参数的变化范围内,所得到的优化解仍能保持其有效性。 Python作为一种高效的编程语言,在鲁棒优化领域的应用越来越广泛。Python的简洁语法、丰富的科学计算库以及强大的社区支持使得它成为了进行算法开发和数据分析的理想选择。例如,Python的NumPy和SciPy库提供了强大的数值计算能力,Pandas库适合处理和分析大型数据集,而Matplotlib库则可以用来制作高质量的图表,辅助分析鲁棒优化的结果。 在Python中实现鲁棒优化,常见的做法是使用专门的优化工具包,如PuLP、CVXPY等。这些工具包提供了建模和求解优化问题的高级接口,能够方便地定义目标函数和约束条件,并且能够与多种求解器(如GLPK、CPLEX等)进行交互,从而求解复杂的鲁棒优化问题。此外,Python还能够轻松调用外部算法或程序,为鲁棒优化提供更广泛的求解策略。 鲁棒优化的Python实现通常涉及到以下几个步骤: 1. 定义决策变量:这一步需要明确优化问题中需要做出决策的变量。 2. 构建目标函数:目标函数反映了优化的最终目的,可以是最小化成本、最大化收益等。 3. 设定约束条件:约束条件保证了所得到的解决方案在各种不确定性参数的变化下,仍然满足问题的限制。 4. 建立参数的不确定性集合:确定参数可能变化的范围或概率分布。 5. 利用优化算法求解:选择合适的算法或工具包求解鲁棒优化问题。 6. 分析结果和实施决策:对求解结果进行分析,并根据结果制定相应的决策。 随着机器学习和人工智能技术的发展,鲁棒优化模型在实际应用中的表现也越来越受到关注。比如在供应链管理、金融风险管理、网络安全等领域,鲁棒优化提供了一种强有力的决策支持工具,帮助决策者在不确定的环境中做出更加稳定可靠的决策。 鲁棒优化是一种在不确定性下寻求最优化解的数学方法,在多个行业中都有广泛的应用。Python作为一种强大的编程工具,通过其丰富的库和强大的社区支持,为鲁棒优化的建模和求解提供了便利,使得鲁棒优化在实际问题中能够更加高效地得到应用。通过上述步骤,可以构建一个鲁棒的优化模型,帮助企业和组织在面对各种不确定因素时,依然能够做出有效的决策。随着人工智能和机器学习技术的发展,鲁棒优化将在更多领域展现其强大的潜力,成为解决不确定性和风险问题的重要工具。
2025-06-09 10:20:12 890B python
1
为解决配电网中分布式光伏最大准入容量的问题,以系统安全运行为约束建立分布式光伏准入容量的鲁棒模型。为了适应新型配电网,协调系统安全性与分布式光伏准入容量之间的矛盾,在评估分布式电源准入容量时考虑包含有有载调压变压器和静止无功补偿装置等主动管理手段的网络拓扑,并建立鲁棒性指标实现不确定区间可调节鲁棒优化。通过鲁棒线性优化方法将不确定模型转化为确定的混合整数线性规划进行求解。以改进的IEEE33节点为例,通过比较本文提出的算法及随机规划算法,验证了本文所建模型的可行性和有效性。
2025-04-04 12:03:45 910KB 分布式光伏 鲁棒优化 不确定性
1
两阶段鲁棒优化模型 多场景 采用matlab编程两阶段鲁棒优化程序,考虑四个场景,模型采用列与约束生成(CCG)算法进行求解,场景分布的概率置信区间由 1-范数和∞-范数约束,程序含拉丁超立方抽样+kmeans数据处理程序,程序运行可靠,有详细资料
2023-12-29 16:50:33 538KB matlab 编程语言
1
两阶段鲁棒优化模型 多场景 采用matlab编程两阶段鲁棒优化程序,考虑四个场景,模型采用列与约束生成(CCG)算法进行求解,场景分布的概率置信区间由 1-范数和∞-范数约束,程序含拉丁超立方抽样+kmeans数据处理程序,程序运行可靠,有详细资料
2023-12-29 16:41:51 538KB matlab 编程语言
1
读文章是复现文章的第一步,读有代码文章可以事半功倍!而复现一篇文章是写文章的前提!! 这里献上电力系统优化调度与预测方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper!!! 包含需求响应/两阶段鲁棒优化/多目标优化/机会约束/二阶锥松弛/时间序列预测/经验模态分解/微电网经济调度/综合能源系统优化调度/低碳调度/碳交易/综合需求响应/电动汽车/多时间尺度/智能算法/配电网最优潮流/无功优化/共享储能/分布式算法/主从博弈/合作博弈等文献复现matlab代码 代码除特殊说明,均为matlab-yalmip-cplex/gurobi编写与运行!代码有偿,清单及详细介绍请见PDF文档
2023-04-20 19:43:34 60.17MB matlab 能源 算法
1
电力系统预测和优化方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper!!!!【不断更新】 读文章是复现文章的第一步,读有代码文章可以事半功倍!而复现一篇文章是写文章的前提。 这里献上电力系统优化调度与预测方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper! 包含需求响应/两阶段鲁棒优化/微电网经济调度/综合能源系统/低碳调度/碳交易/综合需求响应/电动汽车/多时间尺度/智能算法/配电网最优潮流/无功优化/共享储能/分布式算法/主从博弈/合作博弈等文献复现matlab代码 以下代码除特殊说明,均为matlab-yalmip-cplex/gurobi编写与运行
1