内部阻塞的解决方法 内部阻塞是BANYAN网络必须解决的一个问题,解决办法可有如下考虑: 1.通过适当限制入线上的信息量或加大缓冲存储器来减少内部阻塞 内部阻塞是在2×2交换单元的两条入线要向同一个出线上发送信元时产生的,在最坏的情况下,这个概率是1/2。但是,如果入线上并不总是有信号,这个概率就会下降。 2.通过增加多级交换网络的多余级数来消除内部阻塞 例如,把8×8 BANYAN网络的级数由3增加到5,就可以消除内部阻塞。事实上,有人已经证明了,若要完全消除N×N的BANYAN网络(其级数为M=log2N)的内部阻塞,至少需要2log2N-1级。 3.增加BANYAN网络的平面数,构成多通道交换网络。 4.使用排序-BANYAN网络,这是解决BANYAN网络的内部阻塞问题的一个重要方法。
2025-06-16 09:08:33 1.36MB 交换单元 网络
1
分享课程——2023重磅更新,TS从入门到深度掌握,晋级TS高手(升级版15章),附源码。
2025-06-12 14:02:09 3KB
1
在当前数字化办公环境中,电子章制作软件扮演着重要的角色,它可以帮助个人和企业快速、便捷地制作出符合规范的电子印章,以满足无纸化办公的需求。标题中的“电子章制作软件”指的是这类能够帮助用户创建电子印章的应用程序,而描述中的“找了好多都不如意,只有这个最称心”则暗示了这款名为NTKOSecHandSign的软件在众多电子章制作工具中脱颖而出,可能因其易用性、功能完善或效果逼真而受到用户的青睐。 电子章,作为一种电子形式的印章,通常包含组织或个人的标识信息,用于电子文档的安全签署和验证。与传统的实物印章相比,电子章具有存储方便、传输快捷、安全性高等特点。在法律法规允许的范围内,电子章可以广泛应用于合同签署、文件审批等业务场景,极大地提高了工作效率。 NTKOSecHandSign作为一款专业的电子章制作软件,可能具备以下核心功能和特点: 1. **模板丰富**:提供多种类型的印章模板,如圆形、方形、异形等,用户可以根据需求选择合适的模板,也可以自定义设计。 2. **个性化定制**:支持添加文字、图像、二维码等元素,用户可以自由调整字体、颜色、大小,以及印章的边框样式,实现个性化定制。 3. **高清晰度**:生成的电子章图像质量高,确保打印或电子显示时清晰可见,细节处理到位,接近真实印章效果。 4. **安全加密**:采用数字签名和加密技术,保证电子章的唯一性和不可篡改性,增强电子文档的安全性。 5. **兼容性强**:能与常见的办公软件如Word、PDF等无缝集成,方便用户在文档中插入和应用电子章。 6. **批量处理**:对于大量文档需要盖章的情况,软件可能提供批量处理功能,大大提高工作效率。 7. **操作简便**:界面友好,操作流程简单,即使是对计算机不太熟悉的用户也能轻松上手。 8. **合法性认证**:可能与国家认可的电子认证服务提供商合作,确保生成的电子章符合法规要求,具有法律效力。 9. **云存储**:支持云端保存和备份电子章,便于多设备同步使用,同时降低丢失风险。 10. **权限管理**:设置不同级别的用户权限,控制电子章的使用和管理,防止滥用。 NTKOSecHandSign电子章制作软件可能是一款综合性能优秀的工具,它在易用性、功能完善和安全性方面都达到了用户较高的期望。通过这款软件,用户可以方便地创建和管理自己的电子章,从而在数字化办公环境中更加高效、安全地进行文件签署和流转。
2025-06-11 21:24:12 2.02MB
1
计算机组成与接口设计是计算机科学领域的一个重要分支,它关注的是如何设计和构建计算机的硬件系统以实现软件程序的运行。MIPS架构是一种广泛研究和使用的精简指令集计算(RISC)架构,它为教学和研究提供了一个理想的平台。在《计算机组成与接口设计》MIPS第六版中,第四章可能专注于处理器的设计与实现,包括各种控制信号的角色、数据通路的配置、以及指令的执行过程。 从提供的部分内容来看,我们可以了解到在MIPS处理器中,指令的执行涉及到控制信号的配置,例如MemRead信号在数学意义上是一个“don’t care”,意味着无论选择什么值,指令都能正确运行。但在实际情况下,为了避免内存段错误或缓存未命中,MemRead应该设置为false。此外,章节中提到了处理器内部的一些关键部件,包括寄存器、ALU源选择器(ALUsrc mux)、算术逻辑单元(ALU)、内存至寄存器选择器(MemToReg mux)等。这些部件都是处理器执行指令时不可或缺的部分。 在指令执行的过程中,所有部件都会产生一定的输出。例如,数据存储器(DataMemory)和立即数生成器(Imm Gen)的输出可能在某些情况下不会被使用。指令的类型也会影响处理器的行为,例如,存储指令(sd)和分支相等指令(beq)不会将值写入寄存器文件,因此,MemToReg mux传递给寄存器文件的值会被忽略。此外,加载指令(Load)和存储指令(Store)是唯一使用数据存储器的指令。 处理器设计中,指令的获取和执行也非常重要。所有指令都需要从指令存储器中预取,以供执行。在指令集架构中,R型指令不需要使用符号扩展器,而其他指令类型可能需要。符号扩展器即使在不需要其输出的情况下,也会在每个周期产生输出,如果输出不需要,那么它就会被简单忽略。 在处理器的异常处理方面,某些指令类型可能会导致处理器行为出现问题。例如,加载指令在MemToReg的选择上存在不明确的情况。I型指令、加载指令和存储指令都有可能产生问题。在具体指令执行的上下文中,编码指令如“sd x12, 20(x13)”涉及到具体的寄存器操作和地址计算。 处理器中的程序计数器(PC)更新也非常重要。新的PC值是旧的PC值加4,这一信号流从程序计数器开始,通过“PC + 4”加法器,通过“分支”选择器,然后返回到程序计数器。ALU操作(ALUOp)和跳转指令(Branch)的逻辑也需要正确配置。 具体到指令执行的细节,例如“sd x12, 20(x13)”指令,需要读取特定的寄存器,计算存储地址,并且不应该将结果写回到寄存器文件中。此外,还需要设置RegWrite为false,以防止不必要的写回操作。 在处理器设计中,还需要评估是否需要增加额外的逻辑块来处理特定的指令或操作。在某些情况下,可能不需要额外的硬件支持。 综合来看,MIPS架构的设计与实现要求对处理器内部的各个组成部分有深刻的理解,以及对不同指令类型和操作的影响有准确的把握。这包括如何配置控制信号、如何设计数据通路、以及如何处理异常情况等。
2025-06-07 14:32:26 659KB
1
在人工智能和自然语言处理领域,大语言模型因为其在理解、生成语言方面的能力,已经在多个场景中发挥重要作用。大模型通过在大规模数据集上的预训练,可以掌握丰富的世界知识,并在多任务中展示其处理能力。然而,由于预训练数据的局限性,大模型在特定的垂直领域,例如医学、金融、法学等,往往缺乏足够的专业知识,难以胜任专业领域内的任务。为了使大模型更好地适应这些领域,通常需要进行领域适配,而这通过简单的提示工程是难以完成的。 参数高效微调技术(Parameter-Efficient Fine-Tuning, PEFT)因此应运而生,它旨在降低微调大型模型的成本,同时提高效率。微调是通过在特定任务或领域的数据集上对模型参数进行训练,以增强模型在该任务或领域的性能。在参数高效微调中,这个过程不再要求对模型的所有参数进行更新,而是选择性地调整模型的部分参数,或者通过其他机制来实现模型性能的提升。 本章主要介绍了当前主流的参数高效微调技术,首先简要介绍参数高效微调的概念、参数效率和方法分类,然后详细介绍参数高效微调的三类主要方法,包括参数附加方法、参数选择方法和低秩适配方法,并探讨它们各自代表性算法的实现和优势。本章通过具体案例展示参数高效微调在垂直领域的实际应用。 参数附加方法是通过向模型中添加新的参数来实现微调,而这些参数的数量相比整个模型来说相对较小,从而实现成本的降低。例如,Adapters是参数附加方法的一个典型例子,它们被设计成可插拔的模块,可以针对特定的任务训练,而不影响模型的其余部分。 参数选择方法则是在现有的模型参数中选择一部分进行训练,这种方法的核心在于参数选择策略,如何在保持性能的同时,最大程度减少需要训练的参数数量。比如,基于稀疏性的方法通过设置阈值来确定哪些参数是重要的,而哪些可以保持不变。 低秩适配方法是通过引入低秩结构来近似模型的权重更新,通过这种方式,可以以更少的参数来模拟整个模型的更新,从而在计算上更为高效。低秩方法可以是基于张量分解的技术,或者通过引入低秩矩阵来近似整个权重矩阵的更新。 为了实现效果可靠、成本可控的参数高效微调,我们需要对这些方法进行深入的研究和实践。每种方法都有其特定的优势和局限性,选择合适的方法需要根据实际任务的需求和资源的限制来决定。通过这些技术,大模型在垂直领域的应用将变得更加可行和高效。 无论是在医学、金融还是法学领域,参数高效微调技术都有望为大模型在这些专业领域中的应用打开新的大门。它不仅能够增强模型在垂直领域的适应性和准确性,而且还能降低对计算资源的需求,使得大模型更加经济和环保。随着技术的不断进步和优化,我们可以期待参数高效微调技术在未来将得到更广泛的应用,从而推动人工智能在各行各业的深入发展。
2025-05-26 14:04:17 2.8MB
1
易语言教程-第四章-第一个程序-串口调试助手
2025-05-24 23:08:52 935KB 课程资源
1
施耐德PLC讲座第章-IEC语言:梯形图.ppt
2025-05-22 11:35:58 2.18MB
1
《Android NDK与PDF电子签章技术详解》 在移动开发领域,Android NDK(Native Development Kit)扮演着至关重要的角色,它允许开发者使用C、C++等原生代码来编写部分应用程序,以提高性能、优化计算密集型任务或者利用第三方C/C++库。在本项目"MyPDFProject"中,我们看到主要关注的是PDF电子签章功能,这是一个涉及到安全性、合法性和用户体验的关键特性。 PDF(Portable Document Format)电子签章是一种保证文档完整性和身份验证的技术。在PDF文件上添加电子签章,可以确保文件在传输和存储过程中未经篡改,同时表明签名人对内容的认可。电子签章的实现通常依赖于加密算法,如RSA或AES,以及数字证书,这些都需要NDK来处理原生级别的加密操作。 Android NDK的使用在本项目中体现在以下几个方面: 1. **原生库的构建**:项目中可能包含了armeabi-v7a架构的动态库,这是Android设备常见的处理器架构。然而,为了兼容更多设备,尤其是64位设备(如armeabi-v8a, arm64-v8a, x86, x86_64),需要构建针对不同架构的原生库。NDK的交叉编译功能可以帮助我们在本地环境中生成多平台的库文件。 2. **加密算法实现**:PDF电子签章涉及加密算法,例如RSA用于签名,AES用于数据加密。这些原生代码的实现可以在NDK环境中完成,提供高性能且安全的加密服务。 3. **数字证书处理**:电子签章需要数字证书来验证签发者的身份。NDK可以处理PKCS#7或X.509证书,进行证书链验证和签名计算。 4. **JNI接口**:通过Java Native Interface (JNI),Android应用可以调用NDK中的原生函数,实现PDF文件的读取、修改和签章功能。JNI接口是Java和原生代码交互的桥梁,使得Java层可以轻松地调用C/C++库。 5. **性能优化**:PDF处理和加密计算往往需要较高的计算性能,原生代码的执行效率通常优于Java,因此使用NDK可以显著提升电子签章的性能。 6. **错误处理与调试**:在原生代码中,我们需要考虑错误处理机制,确保在出现问题时能够及时捕获并反馈。此外,NDK也提供了工具,如ndk-stack,用于调试和分析崩溃堆栈。 项目"MyPDFProject"虽然只提到了armeabi-v7a架构的动态库,但为了实现全面支持,开发者需要扩展到其他CPU架构。这涉及到NDK的配置和构建流程,以及对不同平台的兼容性测试。同时,项目中未明确指出是否包含静态库,静态库对于不支持动态加载的环境或减少应用体积是有益的。 总结起来,Android NDK在PDF电子签章项目中起着核心作用,它为处理加密算法、数字证书和性能优化提供了基础。开发者需要对NDK有深入理解,并熟练掌握JNI接口开发,以实现高效、安全的PDF电子签章功能。同时,考虑到设备的多样性,构建多架构的原生库也是项目完善的关键步骤。
2025-05-21 11:42:51 46.64MB Android PDF 电子签章
1
Linux操作系统是开源、免费的类UNIX系统,由芬兰的林纳斯·托瓦兹于1991年首次发布。这个操作系统被广泛应用于服务器、桌面、移动设备等多种平台,以其稳定性和灵活性著称。"Linux操作系统分析(共13章ppt) 中科大 陈香兰" 是一套来自中国科学技术大学的Linux教学资料,由陈香兰教授讲解,旨在深入剖析Linux操作系统的内部工作原理,非常适合已经掌握了一些基础Linux命令,想要进一步了解其内核机制的学者,特别是对于从事嵌入式开发的工程师来说,这套教程具有很高的学习价值。 1. **第一章:Linux简介** - Linux的发展历程:从最初的个人项目到全球开发者协作的开源项目。 - Linux与其他操作系统(如Unix、Windows)的区别。 - Linux发行版的多样性:Ubuntu、CentOS、Debian等。 2. **第二章:Linux文件系统** - 文件系统的基本概念:目录、文件、权限、链接。 - ext2、ext3、ext4等主流Linux文件系统的结构与特性。 - 文件系统挂载和卸载的原理及操作。 3. **第三章:进程管理** - 进程的生命周期:创建、执行、通信、同步、调度、终止。 - 进程间的交互:管道、FIFO、套接字、信号等。 - 进程状态及其转换。 4. **第四章:内存管理** - 物理内存和虚拟内存的概念。 - 内存分配策略:分页、分段、内存映射。 - 内存交换机制:交换文件和SWAP分区。 5. **第五章:进程间通信** - 信号量、消息队列、共享内存等IPC机制。 - Network Socket编程:基于TCP/IP的网络通信。 6. **第六章:调度算法** - 时间片轮转、优先级调度、实时调度等策略。 - CFS(Completely Fair Scheduler)的运作机制。 7. **第七章:文件系统实现** - 文件I/O操作:打开、读写、关闭。 - 文件缓存机制:提高I/O性能的关键。 8. **第八章:设备驱动程序** - 设备驱动的分类:字符设备、块设备。 - UDEV框架:设备管理和命名规则。 9. **第九章:网络编程** - 网络模型:OSI七层模型和TCP/IP四层模型。 - Socket API:建立连接、数据传输、断开连接。 10. **第十章:安全与权限** - 用户与组的概念:UID、GID、权限位。 - SELinux:强制访问控制增强系统安全。 11. **第十一章:系统调用** - 系统调用的作用:用户空间与内核空间的桥梁。 - 常见系统调用:fork、execve、exit等。 12. **第十二章:内核模块** - 内核模块的加载与卸载。 - 模块的编译与调试方法。 13. **第十三章:嵌入式Linux** - 嵌入式系统的特点和挑战。 - 在嵌入式设备上裁剪和移植Linux内核。 通过这套教程的学习,读者可以全面理解Linux操作系统的核心机制,提升在实际项目中的应用能力,无论是系统管理员、开发者还是系统设计者,都能从中受益匪浅。结合"linux操作系统教程 陈香兰"提供的PPT,将理论与实践相结合,将有助于深化对Linux操作系统的理解和运用。
2025-05-19 20:19:13 7.31MB Linux 操作系统
1
MC8051软核在FPGA上的使用知识点: MC8051是一种IP软核,即知识产权软核,它是对经典8051微控制器的功能复现,可以在FPGA(现场可编程门阵列)上实现其硬件逻辑。MC8051软核的使用主要是为了在FPGA上实现8051微控制器的设计和应用开发。 MC8051软核的基本结构包括几个主要部分:顶层结构、设计层次、硬件配置、并行I/O口以及其他辅助说明。 在顶层结构方面,MC8051IPCore展现了其核心部分与存储模块的连接关系,包括定时器/计数器模块、串行接口单元模块等。顶层信号包括系统时钟输入(clk)、异步复位(reset)、定时器/计数器输入(t0和t1)、串口数据接收(rxd_i)、外部中断输入(int0_i和int1_i)以及四个并行I/O口(P0、P1、P2、P3),它们分别对应输入和输出信号。 在设计层次方面,MC8051IPCore的设计层次及对应的VHDL文件结构是明确的。VHDL源文件的命名通常以“entity-name_.vhd”作为实体文件名,而“se”作为架构文件名的前缀。 MC8051软核的功能特点非常重要,包括完全同步设计、指令集与标准8051兼容、指令执行速度快、用户可配置定时器/计数器和串行接口单元数量、支持乘法器、除法器和十进制调整指令、I/O口不复用、内部自带256字节RAM以及可以扩展至64K字节的ROM和RAM。 此外,MC8051软核在使用上,通过Quartus II这样的设计软件进行综合和编译应用,这是实现MC8051软核在FPGA上应用的核心步骤。在综合过程中,用户需要生成ROM和RAM模块,并将MC8051核心封装并应用测试。这里提到的Quartus II是Altera(现已被Intel收购)公司的一款集成FPGA设计软件,支持从设计输入到器件配置的整个FPGA开发流程。 MC8051软核的使用还包括了硬件测试,通常通过编写简单的C51程序来对51核心进行硬件测试。这一过程是检验软核设计是否满足预期功能的重要步骤。 MC8051软核的软件指令集在附录A中描述,其中包括了关于MC8051IPCore的指令集详细列表,这是理解如何编写适合MC8051软核的程序所必需的。 教程强调了在MC8051软核的学习和应用中需要注意的一些问题。举例来说,它提到了周立功编写的mc8051IP核教程,说明了该教程中的某些内容已经过时,并因此进行了内容更新。该教程使用的例子是基于较旧的Cyclone系列器件和较低软件版本,与目前主流版本存在较大差异。所以,本教程对相关的综合操作进行了更新,使用了Quartus II软件来综合工程,并且还提供了针对MC8051IPCore(V1.6)的下载信息。 MC8051软核在FPGA上的使用方法,提供了一个从零基础到具备独立开发能力的完整学习路径。芯航线FPGA开发板,作为辅助工具,旨在帮助初学者快速成长。通过实际操作MC8051软核,学习者可以逐步掌握FPGA设计、调试与应用开发的相关技能。
2025-05-15 23:53:14 3.58MB Ip软核
1