张社香的AI口腔健康评估报告由南昌东湖区德韩口腔门诊有限公司出具,该报告基于患者数据,利用AI技术生成,其目的是为医疗机构提供临床参考数据。报告指出张社香存在多种口腔问题,包括牙体缺损、根尖周炎、残根、牙缺失、牙槽骨吸收和牙齿磨损等。 在口内照分析部分,报告展示了张社香的口内右侧位和左侧位照片,全景影像分析则涵盖了全景片的解读。问题总结部分详细列举了患者存在的具体问题,并以颜色区分了不同问题的优先级。具体来说,诊断结果和治疗建议都有所提及,包括针对牙列缺损、残根、牙体缺损、重度牙齿磨损、倾斜牙齿和重度牙槽骨吸收等情况的治疗措施。 在问题解读部分,报告进一步详细解释了牙缺失、残根、牙体缺损和牙齿磨损的概念、成因、危害以及预防和治疗措施。例如,报告指出牙缺失会影响咀嚼功能和面容美观,可能导致咬合关系不良以及颞下颌关节病变,而残根可能导致美观问题、发音和咀嚼功能障碍,并增加局部肿痛和创伤性溃疡的风险。 为了预防这些口腔问题,报告建议养成良好的口腔卫生习惯,定期进行口腔清洁维护,并积极治疗龋坏和牙周炎症等疾病。同时,针对具体问题,如残根建议尽早拔除,牙体缺损则建议采用充填或冠修复等方法。 报告的最后部分进行了知识科普,强调了预防口腔问题的重要性,并提示公众应定期检查口腔健康状况,以避免更严重的后果。报告强调,尽管AI技术在口腔健康评估中起到了辅助作用,但最终的诊断和治疗方案应由专业医生根据病历进行确定。 张社香的AI口腔健康评估报告是一份详细分析个人口腔健康状况的文件,通过AI技术的辅助,为患者提供了全面的问题概览、影像分析、问题总结和科普知识。报告突出了口腔健康问题的严重性,并强调了预防和治疗的必要性,旨在帮助患者更好地维护口腔健康。
2025-11-04 14:03:02 3.76MB
1
内容概要:本书《Agentic Design Patterns: A Hands-On Guide to Building Intelligent Systems》系统介绍了构建智能代理系统的核心设计模式与实践方法,涵盖从基础概念到高级架构的完整知识体系。书中重点讲解了代理系统的并行化执行(如ParallelAgent与SequentialAgent)、记忆管理(短期上下文与长期记忆)、人机协同(Human-in-the-Loop)、知识检索增强(RAG)、任务优先级排序、多代理协作、评估监控机制以及推理引擎内部工作机制等内容。通过Google ADK、LangChain等工具的实际代码示例,展示了如何构建高效、可靠、可扩展的智能代理系统,并强调在高风险领域中确保安全性、透明性与责任性的设计原则。 适合人群:具备一定人工智能、机器学习或软件工程背景的研发人员、技术负责人及AI产品经理,尤其适合从事智能系统设计、LLM应用开发或自动化平台建设的专业人士。 使用场景及目标:①掌握如何利用并行化与流程编排提升代理系统效率;②理解记忆管理与上下文工程在复杂任务中的关键作用;③设计具备人类监督与反馈机制的安全可控AI系统;④构建支持自我验证与合同式交互的高可信度智能代理。 阅读建议:本书理论与实践结合紧密,建议读者在学习过程中动手运行代码示例,深入理解ADK、LangGraph等框架的设计理念,并关注智能系统在真实场景中的评估、治理与伦理挑战。
2025-11-03 11:11:25 17.56MB AI编程
1
智慧药箱是由ByteFoyge团队开发的一个集成了多项尖端技术的医疗产品,其核心亮点包括AI技术在日常生活中的应用、鸿蒙操作系统上的开发实践、物联网技术的融入,以及对IoTDB数据库的应用。 AI技术的融入使智慧药箱具备了智能辅助功能,比如AI问诊小助手,它能够通过学习和分析用户的健康数据,提供初步的诊断建议或健康咨询服务。这样的功能极大地提升了用户使用药品和管理自身健康的便利性。另外,AI技术在数据处理和分析方面的优势,还可以帮助医疗机构更好地管理病患信息,提升医疗资源的利用率。 鸿蒙操作系统作为华为推出的一款分布式操作系统,具有跨设备协同工作、模块化能力突出等特点。智慧药箱采用鸿蒙开发,意味着它可以在各种支持鸿蒙系统的智能设备之间无缝连接,比如智能手机、平板电脑、智能手表等,从而实现跨平台的数据同步和交互,为用户带来更加便捷的使用体验。 物联网技术的融入,为智慧药箱的远程控制和监测提供了可能。利用物联网技术,智慧药箱可以实时监控药品存储条件,如温度、湿度等,确保药品安全有效地存储。同时,用户可以通过智能手机等移动设备实时监控药箱状态,远程获取药品信息,或调整药品存储环境,极大地提升了居家医疗的便利性。 IoTDB数据库的应用是智慧药箱的一个重要特点。IoTDB是一个专门为物联网设计的时序数据库,它能够高效地处理和存储物联网设备产生的海量时序数据。在智慧药箱项目中,IoTDB的使用保证了设备数据的实时存储和高效查询,从而支持了药箱各种智能功能的实现,如数据记录、状态监控、历史数据分析等。 另外,项目的医疗-neighbor服务是一个专注于社区家庭的上门问诊服务。它通过AI问诊小助手、预约问诊、药品订购等功能,为社区居民提供了便捷的医疗服务。该项目采用Fisco-Bcos区块链技术存储基本数据,保证了数据的安全性和不可篡改性;而利用IPFS(InterPlanetary File System,星际文件系统)技术存储文件信息,进一步增强了用户的隐私保护。Fisco-Bcos作为一个开源的区块链基础平台,适合构建企业级的应用,其具备的高性能、高并发处理能力使得医疗-neighbor服务的数据处理更加高效;而IPFS作为一个去中心化的文件存储系统,能够提供更加可靠和安全的文件存储服务。 项目名称中的“智慧药箱”暗示了该产品将如何为用户带来便利,它通过融入AI、鸿蒙开发、物联网以及IoTDB数据库等先进技术,形成了一个智能化、便捷化、安全化的产品,以满足用户在现代生活中对健康管理和医疗服务的需求。这种结合最新技术的创新应用,展示了科技发展对传统行业的革新作用,同时也预示了未来科技产品的发展趋势。
2025-11-02 19:27:31 171KB AI
1
AI智能图片编辑器:专业级图像处理解决方案 这是一款融合前沿人工智能技术的图片编辑工具,为用户提供专业级的图像处理能力。基于HuggingFace AI模型,配合Vue 3与TypeScript开发,确保了强大功能与极致性能的完美平衡。 核心特性: 1. 先进技术支持 - 集成HuggingFace AI模型 - RMBG-1.4背景移除技术 - 本地化AI处理引擎 2. 安全性保障 - 纯前端运行机制 - 本地数据处理 - 无需服务器上传 3. 专业级性能 - Vue 3架构支持 - TypeScript开发 - 响应式设计 4. 主要功能 - 智能背景移除 - 图像优化处理 - 便捷导出选项 适用场景: - 产品图片处理 - 社交媒体图片 - 摄影作品优化 - 设计素材制作 技术规格: - Vue 3.5 - TypeScript 5.7 - TensorFlow.js - MediaPipe - Ant Design Vue 4.2 这款工具为专业设计师和普通用户alike提供了便捷的图片处理解决方案。无需注册,即开即用,让您的图片处理工作更加高效。 访问在线
2025-10-31 09:54:02 112KB 人工智能 vue3
1
内容概要:本文档详细介绍了基于STM32的智能AI号脉系统的开发过程,旨在解决传统中医把脉依赖医师经验和难以量化脉象特征的问题。系统架构由中医脉诊传感器、STM32F407信号处理、AI脉象分析模块和LCD显示/APP反馈组成。关键硬件包括MPXV7002DP脉搏传感器、STM32F407主控芯片、128×64点阵OLED显示模块和HC-05蓝牙模块。核心代码采用C++面向对象设计,分为脉搏信号采集模块、AI脉象分析模块和用户交互模块。开发调试与优化要点涵盖信号采集优化、AI模型部署和诊断结果验证。技术亮点包括浮点运算单元加速、硬件级DMA传输、轻量化诊断模型和实时波形显示功能。; 适合人群:对嵌入式开发有一定了解,特别是熟悉STM32平台的开发者和技术爱好者。; 使用场景及目标:①了解中医脉诊传感器与STM32的结合应用;②掌握C++面向对象编程在嵌入式系统中的实现;③学习如何使用NanoEdge AI Studio生成轻量化的AI模型并部署到STM32上;④实现脉象数据的实时采集、分析和可视化。; 阅读建议:建议读者首先熟悉STM32的基本操作和C++编程基础,然后按照文档提供的模块化设计思路逐步实现各个功能模块。在实践中可以参考提供的完整工程代码和测试用例,确保每个环节都能正常工作。此外,读者应准备好必要的硬件设备和开发环境,如ST-Link调试器和Keil MDK等。
2025-10-30 23:00:00 24KB 嵌入式开发 STM32 AI医疗
1
人工智能技术的发展历程与应用概述 人工智能(AI)的发展历程可以追溯到20世纪中叶,至今经历了多个阶段的演变和突破。早期的AI以符号主义学派为主,侧重于通过规则库和逻辑推理实现专家级决策,例如1970年代的MYCIN医疗诊断系统。随着计算机算力的提升和数据积累的增加,AI研究开始转向数据驱动的机器学习方法。 机器学习(ML)作为AI的一个重要分支,主要通过数据驱动的方式使计算机系统自动学习和改进。它通过构建数学模型来发现数据中的模式和规律,并用于预测或决策。机器学习的方法分为多种类别,包括监督学习、无监督学习和半监督学习,其应用覆盖了从数据标记到预测能力的提升等多个方面。 深度学习作为机器学习的一个子领域,在2006年Hinton提出深度信念网络(DBN)后得到快速发展。深度学习基于深层神经网络的联结主义方法,能够自动提取高阶特征,极大提升了传统机器学习的性能,尤其在图像识别和自然语言处理等领域取得了革命性的进步。在此基础上,强化学习通过与环境的交互与奖惩机制实现动态决策,2013年DeepMind结合Q-Learning与深度网络,推动了深度强化学习(DRL)的发展。 生成式人工智能是近年来AI领域的热点,其特点在于基于大规模预训练模型实现内容创造与跨模态生成。2017年Google团队提出的Transformer模型,以及2022年DALL-E2和StableDiffusion在文本到图像生成方面的突破,都标志着生成式AI的迅猛发展。 尽管AI技术已经取得了巨大进步,但它仍面临着一定的局限性,并涉及到重要的道德规范问题。例如,如何确保AI系统的公平性和透明度,如何处理AI的决策偏差等。在AI应用方面,从船舶与海洋工程到水下机器人,机器学习技术已经展现出广泛的应用前景,包括船舶运动与阻力预测、海洋表面垃圾检测、波浪预测、设备自动识别等多个方面。 在实际应用中,AI技术不仅提高了预测精度和决策质量,还在提高效率、降低成本等方面发挥了重要作用。例如,深度混合神经网络被用于船舶航行轨迹预测,基于神经网络的FPSO(浮式生产储油卸载装置)运动响应预测等。此外,AI技术还在灾害预防、环境监测、协同决策等领域展现了其潜力。 AI技术从其诞生到现今的快速发展,已经深刻改变了众多领域的运作方式。机器学习和大语言模型等关键技术的突破,为AI的发展注入了新的活力。未来的AI将继续在探索智能的极限、拓展应用领域、解决现实问题中发挥关键作用,同时也将面临更多的挑战和伦理考量。展望未来,AI将更加智能化、个性化,并且在与人类社会的协同发展中扮演更加重要的角色。
2025-10-29 20:32:50 14.02MB AI
1
本文提出一种名为IOPLIN的深度学习框架,用于自动检测多种路面病害。该方法通过迭代优化补丁标签推断网络,仅需图像级标签即可实现高精度检测,并能粗略定位病害区域。创新的EMIPLD策略解决了无局部标注的难题,结合CLAHE预处理与EfficientNet骨干网络,充分挖掘高分辨率图像信息。研究团队构建了含6万张图像的大规模数据集CQU-BPDD,涵盖七类病害,推动领域发展。实验表明,IOPLIN在AUC、精确率与召回率上均优于主流CNN模型,尤其在高召回场景下优势显著。其具备强鲁棒性与跨数据集泛化能力,适用于真实复杂路况。该技术可用于路面筛查与病害定位,大幅降低人工成本,助力智慧交通运维。代码与数据集已公开,促进学术共享。
2025-10-29 17:39:42 10.97MB 路面检测 AI 计算机视觉
1
李飞飞博士作为人工智能领域的领军人物,其研究工作对于推动AI技术发展起到了至关重要的作用。在这份综述中,详细地介绍了AI Agent,这是一种模仿人类智能行为和决策过程的智能实体。该综述全面回顾了AI Agent的相关理论、技术进展和应用实践,对AI Agent的架构设计、自主学习能力、适应性、交互性以及决策能力等关键问题进行了深入探讨。 AI Agent的研究不仅关注于智能算法的开发,还涉及如何让AI Agent更好地理解和融入人类社会,以协作的方式与人类共同完成复杂任务。在这份综述中,李飞飞博士团队详细阐述了AI Agent在不同领域中的应用案例,如医疗、教育、交通管理等,显示了AI Agent如何提升工作效率和质量,同时保证了与人类活动的和谐共处。 此外,综述还讨论了AI Agent的伦理和社会影响问题,诸如隐私保护、责任归属、安全性等议题。随着AI Agent技术的日益普及和深化,这些问题是未来发展中不可避免的重要考虑因素。李飞飞博士及其团队对于这些挑战提出了自己的见解和建议,旨在引导AI Agent技术健康、负责任地发展。 综述中还着重分析了AI Agent面临的各种挑战和未来的发展方向。这些挑战包括智能算法的局限性、跨领域的知识迁移、自然语言处理的深度理解等。在这些问题的探讨中,李飞飞博士和团队提出了多种可能的解决方案,并对AI Agent技术的长远前景进行了展望。 这份综述不仅是对AI Agent技术的一次全面回顾,更是对未来发展方向的一次深刻洞察。通过这份综述,我们可以全面了解AI Agent的过去、现在和未来,以及它对于人类社会可能产生的深远影响。
2025-10-29 11:18:14 3.78MB
1
长江作为世界第三长河流,不仅对中国的生态平衡和经济发展具有深远影响,而且在全球碳循环中扮演着重要角色。有机碳作为河流生态系统中的关键组成部分,其溶解态有机碳(DOC)输送的变化将直接关系到流域生态健康状况和碳汇功能。本研究聚焦于利用机器学习技术解析长江DOC输送变化的驱动因素,旨在为河流有机碳循环研究提供新的视角和方法。 本研究首先回顾了长江生态系统的重要性和溶解有机碳的地球化学特征。随着全球气候变化和人类活动的加剧,河流的水环境变化已成为科学研究的热点。长江溶解有机碳的研究进展和水环境变化驱动因素的分析为本研究提供了理论基础和数据支持。 研究目标旨在揭示长江DOC输送变化的主要驱动因素,内容涉及对溶解有机碳变化趋势的检测、影响因素的筛选和相关性分析。技术路线和研究方法部分详细介绍了研究的思路框架和采用的主要方法,如多源数据整合与验证,以及溶解有机碳变化驱动力的初步识别。 在研究区域概况与数据来源方面,本研究详细描述了研究区域的自然环境特征,包括地理位置、水系格局、水文气象条件等,为后续数据分析提供了坚实的背景支撑。长江DOC的时空分布特征研究揭示了碳浓度水平变化和碳分布的空间格局。数据获取与预处理环节则确保了研究数据的准确性和可靠性。 基于机器学习的驱动因素识别模型构建部分,介绍了算法选择与原理、数据集构建、模型训练与优化等核心内容。模型备选方案包括多种机器学习算法,每种算法的原理和优缺点都被逐一讨论,为选择最合适的模型提供了依据。影响因子库的建立和数据标准化处理是确保模型准确性的关键步骤。 模型训练与优化环节的核心在于训练集与测试集的划分,以及模型参数调优策略。这些策略包括交叉验证、网格搜索等技术,以确保模型能够达到最佳的预测效果。通过这些步骤,研究旨在构建一个能够准确识别和预测长江DOC输送变化驱动因素的机器学习模型。 机器学习在环境科学领域的应用为分析复杂系统的时空变化提供了强大的工具,尤其是在河流DOC输送变化的驱动因素分析方面。本研究通过深入分析长江DOC输送变化的驱动因素,对于优化长江流域的生态环境管理和实现可持续发展具有重要的理论和实际意义。
2025-10-29 11:10:56 100KB 人工智能 AI
1
集成DeepL+Gemini双引擎,支持网页双语对照、PDF翻译、视频字幕实时翻译,可一键导出翻译记录。适用人群:研究生、论文党、跨境电商运营及需要阅读外文资料的技术开发者。使用场景及目标:在浏览技术文档、外贸站点或学术论文时实现无刷新沉浸式翻译,比传统插件准确率提升30%。其他说明:插件开源,无需注册,完全离线词库可断网使用;附赠自定义API接口教程,轻松接入私有翻译服务。 2025年推出的Chrome插件是一种具备AI翻译功能的工具,它将两种强大的翻译引擎DeepL和Gemini结合起来,为用户提供网页双语对照、PDF文档翻译和视频字幕实时翻译功能。它的主要用户群体包括研究生、论文撰写者、跨境电商的运营人员以及那些需要阅读大量外文资料的技术开发者。这些用户在浏览技术文档、进行外贸业务或研究学术论文时,可以依赖这款插件进行无刷新沉浸式翻译,提升工作效率。 这款插件的准确率比传统翻译插件高出30%,为用户提供更高质量的翻译服务。它还有一个特点是完全开源,用户无需进行注册,就能够使用插件的功能。此外,它还配备了可离线使用的词库,即便是在网络中断的情况下,用户依旧可以继续使用翻译功能。插件开发者还提供了自定义API接口的教程,方便用户将私有的翻译服务接入插件,进一步扩展了使用范围和灵活性。 这款插件不仅功能全面,还能够将翻译内容一键导出,方便用户整理和后续使用。它的设计理念是为了满足特定用户群体的需求,提供了一种高效率、高准确率且具备个性化功能的翻译解决方案。对于希望在多语言环境中提升工作效率的专业人士而言,这款插件无疑是一个强大的助手。 此外,由于插件的开源特性,它还能够吸引那些喜欢DIY和定制软件的用户进行研究和改进。对于技术人员而言,这不仅是一个工具,更是一个可以进行探索和学习的平台。插件的易用性和强大的功能组合,确保了它能够在激烈的市场竞争中脱颖而出,成为2025年技术用户不可缺少的工具之一。
2025-10-29 10:02:27 9.24MB chrom
1