CO2环境中改性PET熔体的表面张力,奚桢浩,仲华,基于悬滴法原理和在线图像分析软件,测量了超临界CO2环境中改性的高熔体强度PET熔体在0~14 MPa,250~290 oC温度范围内的表面张力,讨论了 【摘要分析】 本文由奚桢浩、仲华等人发表,主要研究了在超临界二氧化碳(CO2)环境中,经过改性的高熔体强度PET(Polyethylene Terephthalate)熔体的表面张力。研究团队运用悬滴法原理和在线图像分析软件,对在0至14 MPa的压力和250至290摄氏度的温度区间内的PET熔体进行了表面张力的测量。研究表明,由于改性PET熔体内存在的长链支化结构,其表面张力相对于常规线性PET熔体更高,范围大约在13至20 dyn/cm。此外,他们发现随着温度和CO2压力的增加,熔体的表面张力呈现下降趋势。 基于实验数据,研究人员建立了改性PET熔体表面张力的预测模型,并利用Macleod方程描述了熔体表面张力与熔体-CO2两相密度差之间的关系。这些发现对于理解在超临界CO2环境下的聚合物改性行为以及在加工过程中的行为(如发泡)具有重要意义。 【关键词解析】 1. 表面张力:是物质表面层分子间的相互作用力,影响物质的润湿性、扩散性和发泡等过程。 2. 改性聚酯:通过化学或物理方法改变聚酯的分子结构,以改善其性能,如熔体强度。 3. 超临界二氧化碳:当CO2达到一定温度和压力,其液态和气态无法区分的状态,具有良好的溶剂性和较低的环境影响。 4. 溶解度:物质在溶剂中溶解的能力,与温度和压力有关。 5. 密度差:两种液体或气体之间的密度差异,影响它们之间的界面张力。 【综述】 该研究工作填补了在高温高压下对聚合物熔体表面张力测量的文献空白,尤其是针对改性PET熔体。表面张力的降低有利于改善熔体的流动性和发泡性能,这对聚合物加工工艺优化和新型材料开发具有指导价值。此外,建立的预测模型和Macleod方程为理解和控制改性PET在超临界CO2条件下的行为提供了理论依据。未来的研究可能进一步探讨不同条件下的表面张力变化规律,以及如何利用这些知识改进聚合物的加工和应用。
2025-10-30 20:32:08 757KB 首发论文
1
"基于COMSOL模型的干热岩与超临界二氧化碳开采增强型地热系统模型研究:热流固耦合与高鲁棒性计算",COMSOL模型,地热模型,干热岩模型 超临界二氧化碳开采增强型地热系统地热模型 CO2-EGS,热流固耦合 模型收敛性好,可以根据自己的需求自由修改,计算速度快,鲁棒性好。 ,COMSOL模型; 地热模型; 干热岩模型; 超临界二氧化碳开采; 增强型地热系统; CO2-EGS; 热流固耦合; 模型收敛性好; 计算速度快; 鲁棒性好。,多尺度COMSOL地热及干热岩热流固耦合模型 在当前能源领域,地热能源作为一种清洁、可再生的自然资源,其开发和利用受到了广泛关注。尤其是随着增强型地热系统(Enhanced Geothermal Systems, EGS)技术的发展,人类对地热资源的开发能力得到了显著提高。而在众多EGS技术中,超临界二氧化碳(CO2)作为工作流体的CO2-EGS技术,以其高效热能转换和环保优势,成为了研究的热点。COMSOL Multiphysics是一款强大的多物理场模拟软件,它能够模拟热流固耦合等问题,为研究超临界二氧化碳开采干热岩地热能提供了重要的模拟工具。 本研究以COMSOL模型为基础,重点研究了干热岩与超临界二氧化碳相结合的增强型地热系统模型。在该系统中,超临界二氧化碳作为热交换介质,通过循环抽取地下的热能,并通过地面热交换设备转化为可用的热能或电能。研究中涉及了热流固耦合过程,即考虑了热能、流体流动和岩石应力变形的相互作用,这对于确保系统长期稳定运行至关重要。 研究成果表明,基于COMSOL模型的模拟计算具有良好的收敛性和高鲁棒性,这意味着模型能够快速而准确地响应不同工况的变化,并具有较强的容错能力。此外,模型的自由修改性使得研究人员可以根据实际需求调整参数和边界条件,从而获得更为精确的模拟结果。 探索地热能源模型与增强型地热系统的奇妙之旅涉及了对地热资源的分布、特性及开发技术的深入了解。模型地热模型与干热岩模型超临界二氧化碳开的研究,不仅涉及到地热资源的地质特性,还包括了对超临界二氧化碳流体特性的研究。这些研究工作为地热能源的高效开发提供了理论基础和技术支持。 在对地热能源模型与增强型地热系统的深入探索过程中,研究者们面临着多尺度问题的挑战。多尺度模型能够描述从宏观岩体尺度到微观裂隙尺度的不同物理过程,这对于准确模拟地热系统的复杂行为至关重要。因此,本研究中提到的多尺度COMSOL地热及干热岩热流固耦合模型能够为这一挑战提供解决方案,帮助研究者更好地理解地热系统的动态变化和响应。 通过这份研究,我们可以看到地热能源开发技术的无限可能性。科技领域对于地热能源模型和增强型地热系统的探究,不仅仅是对现有资源的开发,更是对未来能源科技的拓展。通过模型地热模型干热岩模型超临界二氧化碳的深入研究,我们能够更好地掌握地热资源的分布和特性,开发出更加高效和环境友好的地热能技术。 本研究通过COMSOL模型对干热岩与超临界二氧化碳相结合的增强型地热系统进行了深入探讨,涉及热流固耦合、多尺度模拟等关键技术问题。研究结果不仅加深了我们对地热能开发技术的理解,还为未来地热能源的高效和环保开发提供了重要的理论依据和技术支持。随着计算技术的不断进步和地热能源开发技术的持续创新,我们有理由相信地热能源将在未来的能源结构中占据更加重要的位置。
2025-10-21 11:44:25 1.37MB kind
1
利用Matlab与COMSOL模拟的粗糙表面裂缝模型:多领域应用研究及裂隙生成代码附送,利用Matlab和COMSOL生成粗糙表面裂缝模型 生成不同粗糙度的随机表面,可用于CO2驱油与封存研究,驱替煤层气研究,两相流规律研究等 附送裂隙生成代码,相关参考文献 ,Matlab; COMSOL; 粗糙表面裂缝模型; 不同粗糙度随机表面生成; CO2驱油与封存; 驱替煤层气; 两相流规律研究; 裂隙生成代码; 参考文献,Matlab与COMSOL模拟粗糙表面裂缝模型:多应用场景下的两相流与驱替研究
2025-10-11 16:34:09 889KB 数据结构
1
COMSOL模拟流固传热,CO2注入井筒过程的温度压力变化以及对于地层温度的干扰,考虑油管壁,套管环空流体,套管壁,水泥管的导热作用 ,核心关键词:COMSOL模拟; 流固传热; CO2注入; 井筒过程; 温度压力变化; 地层温度干扰; 油管壁; 套管环空流体; 套管壁; 水泥管导热。,COMSOL模拟CO2注入井筒传热过程:温度压力变化与地层温度干扰分析 COMSOL软件是一种高效的多物理场耦合模拟工具,其在石油工程领域的应用主要体现在模拟井筒内部流体与固体之间的热传递过程,以及井筒内外部结构对流体温度和压力的影响。在二氧化碳(CO2)注入井筒的过程中,流固传热效应尤为重要。CO2作为注入介质,其温度和压力的变化会受到井筒内部油管壁、套管环空流体、套管壁以及水泥管等结构的导热作用的影响。通过COMSOL模拟,可以详细分析这些因素如何影响井筒内部的温度和压力分布,以及它们如何进一步干扰到井筒周围的地层温度。 在此类模拟研究中,通常需要考虑井筒内部流体的流动特性、井筒材料的热导率、井筒周围地层的热传递特性等因素。油管壁与套管环空流体之间、套管壁与水泥管之间存在热传递,而这些热传递过程对于井筒内外温度和压力的平衡至关重要。此外,二氧化碳作为注入介质,在注入过程中的相变也可能对井筒内的温度和压力产生影响。因此,为了确保CO2的有效注入并减少对地层温度的干扰,准确模拟这些热传递效应是必不可少的。 在利用COMSOL进行模拟时,研究者需构建包含所有相关物理场的模型,这些物理场可能包括流体动力学、热传导和多相流动等。模型应准确地描述井筒内部结构和外部地层的物理特性,并应用适当的边界条件和初始条件,以保证模拟结果的准确性。通过参数化模拟,可以研究不同操作条件下井筒内部和周围地层的温度和压力变化情况。 在石油工程中,这类模拟有助于优化CO2注入过程,提高采收率,同时也有助于评估井筒设计对地层温度的潜在影响,为地热能源的开发提供理论基础。此外,通过理解井筒与地层之间的热交换过程,可以更好地控制井筒内流体温度,避免因为温度变化导致的材料退化或井筒故障。 COMSOL在模拟CO2注入井筒过程中的流固传热效应方面提供了强大的工具,使得研究人员能够在深入理解复杂物理过程的基础上,优化井筒设计和操作条件,从而提高整个注入过程的安全性和效率。
2025-06-29 13:38:48 2.86MB paas
1
内容概要:本文详细介绍了利用COMSOL进行多孔介质中CO2羽流的两相流传热建模与仿真的全过程。首先讨论了物理场选择,强调了“多孔介质传热”和“达西定律”的结合使用。接着探讨了CO2在裂隙中的相变处理,推荐使用非等温流动耦合,并提供了密度表达式的简化版本。文中还提到了边界条件设置的关键点,如地热储层底部的压力出口而非速度出口,以及网格划分的方法,包括边界层网格的应用和自适应网格的优势。此外,文章深入讲解了传热耦合中的相变潜热处理、非平衡态传热选项的启用,以及调试过程中常见的数值稳定化技巧。最后,作者分享了一些实用的经验和技巧,如参数敏感性测试、时间步长的选择和GPU加速的应用。 适合人群:从事多孔介质传热研究、两相流仿真、地热系统建模的研究人员和技术人员。 使用场景及目标:适用于需要进行复杂两相流传热建模和仿真的科研项目,旨在提高模型准确性、优化计算性能,确保仿真结果与实际情况相符。 其他说明:文章不仅提供了具体的建模步骤和技术细节,还分享了许多实践经验,帮助读者避开常见陷阱,提高建模成功率。
2025-05-27 22:12:33 274KB COMSOL GPU加速
1
Ab initio theoretical study of the interactions between CFCs and CO2,王芳,王海军,Ab initio calculations were carried out for system of CFCs (CFC-11, CFC-12, CFC-13) with CO2, and twelve stable configurations were obtained with no imaginary frequencies. To obtai
2025-05-11 23:37:38 366KB 首发论文
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产,广泛应用于各种嵌入式系统设计。在农业大棚的设计中,STM32扮演了核心控制器的角色,负责采集环境数据、处理信息并执行相应控制操作。 本设计的核心是通过STM32收集大棚内的关键环境参数,包括CO2浓度、光照强度、温度和湿度,以及土壤湿度。这些参数对农作物的生长至关重要,精确监测和控制它们可以优化农作物的生长条件,提高农业生产效率。 1. CO2监测:CO2是植物光合作用的重要因素,过高或过低的浓度都会影响作物的生长。设计中可能使用CO2传感器,如NDIR(非分散红外)传感器,来实时测量大棚内的CO2含量,并根据预设阈值控制通风设备,确保适宜的CO2浓度。 2. 光照控制:光照强度直接影响植物的光合作用。可能采用光敏传感器监测光照水平,结合植物的需求,通过调节遮阳或补光设备来优化光照条件。 3. 温湿度控制:温度和湿度是影响植物生长的两大因素。通过DHT系列或SHT系列温湿度传感器收集数据,STM32可以驱动空调、加热器或除湿设备,维持理想的温室环境。 4. WIFI通信:WIFI模块使得大棚管理系统可以通过无线网络远程监控和控制,用户可以随时随地查看大棚状态,调整设定,实现智能化管理。 5. 水泵风扇控制:水分是植物生长的必需品,土壤湿度传感器检测土壤湿度,配合水泵控制灌溉;风扇则用于通风,防止过热,两者都由STM32控制启停。 6. 手动与自动控制:系统提供了手动和自动两种模式,用户可以根据需要切换。自动模式下,STM32根据预设规则或算法自动调整环境;手动模式则允许用户直接干预,根据观察或经验手动控制各个设备。 项目提供的资源包括原理图、应用程序(APP)、烧录代码等,方便学习者理解和复现整个系统。原理图展示了硬件连接和电路设计,APP可能是用于远程监控和控制的界面,而烧录代码则是实现上述功能的关键软件部分。通过分析和修改这些文件,开发者可以进一步定制系统,适应不同作物或环境的需求。 总结起来,这个基于STM32的农业大棚控制系统是一个集成了多种环境监测和控制功能的综合性项目,它体现了物联网技术在现代农业中的应用,有助于实现精准农业和智能农业的目标。
2025-05-07 22:48:29 13.83MB stm32
1
STM32单片机是一种广泛应用于嵌入式系统设计的微控制器,由意法半导体公司生产。本项目涉及的是利用STM32单片机进行二氧化碳(CO2)气体浓度的检测与仿真,这对于环境监测、室内空气质量控制以及工业安全等领域具有重要意义。下面将详细介绍这个项目中的关键知识点。 1. STM32单片机: STM32系列基于ARM Cortex-M内核,具有高性能、低功耗、丰富的外设接口等特点。在本项目中,STM32将作为整个系统的中心处理器,负责数据采集、处理和控制。 2. CO2气体传感器: 用于检测CO2浓度的传感器通常为电化学或红外吸收类型的。这类传感器可以输出与CO2浓度相关的电信号,例如电压或电流。STM32将通过I2C或SPI接口与传感器通信,读取这些信号,并转换为可处理的数字值。 3. 数据采集与处理: STM32内部的ADC(模数转换器)将传感器的模拟信号转换为数字值。然后,微控制器对这些数字值进行处理,可能包括滤波、线性化等操作,以获得更准确的CO2浓度读数。 4. 仿真环境: 本项目提供了一个仿真环境,可能是基于Keil MDK或者IAR Embedded Workbench这样的开发工具。通过这些工具,开发者可以在实际硬件运行之前对代码进行调试和测试,提高开发效率。 5. 通信协议: 在与传感器通信时,STM32可能使用I2C或SPI通信协议。I2C是多设备串行总线,适合短距离、低速通信,而SPI则提供更高的数据传输速率。理解并正确配置这些通信协议是项目成功的关键。 6. 实时操作系统(RTOS): 虽然描述中没有明确提到,但高级项目可能使用RTOS如FreeRTOS或uC/OS,以实现多任务并发执行,比如同时处理传感器数据、显示和网络通信。 7. 硬件接口设计: STM32将通过GPIO口连接到传感器和其他外围设备,如LCD显示屏或无线通信模块,用于数据显示和远程数据传输。 8. 论文: 提供的论文可能详细阐述了项目的理论基础、设计方案、实现过程以及实验结果。阅读并理解论文可以帮助我们更好地了解项目的具体实现和性能评估。 9. 源码: 源码是实现上述功能的编程实现,通常包括初始化配置、中断服务程序、通信函数、数据处理算法等。通过分析源码,可以学习到STM32的编程技巧和实际应用。 10. 系统集成与测试: 所有这些组件需要整合成一个完整的系统,并进行实地测试以验证其性能和可靠性。这包括校准传感器、调整算法参数、优化功耗等方面的工作。 这个项目涵盖了STM32单片机的硬件接口设计、软件编程、传感器数据处理、通信协议等多个IT领域的专业知识,对于学习和实践嵌入式系统设计以及环境监测技术有着很高的参考价值。
2025-04-12 22:23:22 8.71MB
1
使用STM32F103驱动MH-Z14A 二氧化碳(CO2)传感器的代码 只需要将该传感器的串口接口改为你们自己板子的串口即可使用。欢迎大家踊跃讨论!
2024-03-25 18:46:21 6.41MB stm32 arm 嵌入式硬件
1
植物生长讲究适时、适地,也就是对生长环境温度、湿度、光照强度以及土壤条件的需求比较严格,只有给予了植物合适的生长环境,才会有理想的收获,尤其是人工控制生长环境的温室大棚植物,大棚内的温湿度和土壤的温湿度监控对植物的生长至关重要。 本设计以STM32F103C8T6单片机为主控制器,通过温湿度、土壤湿度、光照强度、CO2浓度等传感器和舵机、加热片、风扇、按键等模块实现对温室大棚内环境的检测和控制,OLED(0.96寸)显示各种控制参数,并且通过WiFi模块接入阿里云平台实现温室大棚环境远程的控制与检测。 实验结果表明:该系统实现了对温室大棚内环境的智能检测和控制,传感器采集的环境数据误差较小,采集的温湿度、CO2浓度、光照强度等数据准确度高达99%,舵机、加热片、风扇等控制效果明显,具有很强的安全性和可靠性,且设备成本低同时节省人力物力,提高劳动生产率。
2024-03-19 15:04:03 8.83MB stm32
1