内容概要:本文详细介绍了利用COMSOL进行多孔介质中CO2羽流的两相流传热建模与仿真的全过程。首先讨论了物理场选择,强调了“多孔介质传热”和“达西定律”的结合使用。接着探讨了CO2在裂隙中的相变处理,推荐使用非等温流动耦合,并提供了密度表达式的简化版本。文中还提到了边界条件设置的关键点,如地热储层底部的压力出口而非速度出口,以及网格划分的方法,包括边界层网格的应用和自适应网格的优势。此外,文章深入讲解了传热耦合中的相变潜热处理、非平衡态传热选项的启用,以及调试过程中常见的数值稳定化技巧。最后,作者分享了一些实用的经验和技巧,如参数敏感性测试、时间步长的选择和GPU加速的应用。 适合人群:从事多孔介质传热研究、两相流仿真、地热系统建模的研究人员和技术人员。 使用场景及目标:适用于需要进行复杂两相流传热建模和仿真的科研项目,旨在提高模型准确性、优化计算性能,确保仿真结果与实际情况相符。 其他说明:文章不仅提供了具体的建模步骤和技术细节,还分享了许多实践经验,帮助读者避开常见陷阱,提高建模成功率。
2025-05-27 22:12:33 274KB COMSOL GPU加速
1
Ab initio theoretical study of the interactions between CFCs and CO2,王芳,王海军,Ab initio calculations were carried out for system of CFCs (CFC-11, CFC-12, CFC-13) with CO2, and twelve stable configurations were obtained with no imaginary frequencies. To obtai
2025-05-11 23:37:38 366KB 首发论文
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产,广泛应用于各种嵌入式系统设计。在农业大棚的设计中,STM32扮演了核心控制器的角色,负责采集环境数据、处理信息并执行相应控制操作。 本设计的核心是通过STM32收集大棚内的关键环境参数,包括CO2浓度、光照强度、温度和湿度,以及土壤湿度。这些参数对农作物的生长至关重要,精确监测和控制它们可以优化农作物的生长条件,提高农业生产效率。 1. CO2监测:CO2是植物光合作用的重要因素,过高或过低的浓度都会影响作物的生长。设计中可能使用CO2传感器,如NDIR(非分散红外)传感器,来实时测量大棚内的CO2含量,并根据预设阈值控制通风设备,确保适宜的CO2浓度。 2. 光照控制:光照强度直接影响植物的光合作用。可能采用光敏传感器监测光照水平,结合植物的需求,通过调节遮阳或补光设备来优化光照条件。 3. 温湿度控制:温度和湿度是影响植物生长的两大因素。通过DHT系列或SHT系列温湿度传感器收集数据,STM32可以驱动空调、加热器或除湿设备,维持理想的温室环境。 4. WIFI通信:WIFI模块使得大棚管理系统可以通过无线网络远程监控和控制,用户可以随时随地查看大棚状态,调整设定,实现智能化管理。 5. 水泵风扇控制:水分是植物生长的必需品,土壤湿度传感器检测土壤湿度,配合水泵控制灌溉;风扇则用于通风,防止过热,两者都由STM32控制启停。 6. 手动与自动控制:系统提供了手动和自动两种模式,用户可以根据需要切换。自动模式下,STM32根据预设规则或算法自动调整环境;手动模式则允许用户直接干预,根据观察或经验手动控制各个设备。 项目提供的资源包括原理图、应用程序(APP)、烧录代码等,方便学习者理解和复现整个系统。原理图展示了硬件连接和电路设计,APP可能是用于远程监控和控制的界面,而烧录代码则是实现上述功能的关键软件部分。通过分析和修改这些文件,开发者可以进一步定制系统,适应不同作物或环境的需求。 总结起来,这个基于STM32的农业大棚控制系统是一个集成了多种环境监测和控制功能的综合性项目,它体现了物联网技术在现代农业中的应用,有助于实现精准农业和智能农业的目标。
2025-05-07 22:48:29 13.83MB stm32
1
STM32单片机是一种广泛应用于嵌入式系统设计的微控制器,由意法半导体公司生产。本项目涉及的是利用STM32单片机进行二氧化碳(CO2)气体浓度的检测与仿真,这对于环境监测、室内空气质量控制以及工业安全等领域具有重要意义。下面将详细介绍这个项目中的关键知识点。 1. STM32单片机: STM32系列基于ARM Cortex-M内核,具有高性能、低功耗、丰富的外设接口等特点。在本项目中,STM32将作为整个系统的中心处理器,负责数据采集、处理和控制。 2. CO2气体传感器: 用于检测CO2浓度的传感器通常为电化学或红外吸收类型的。这类传感器可以输出与CO2浓度相关的电信号,例如电压或电流。STM32将通过I2C或SPI接口与传感器通信,读取这些信号,并转换为可处理的数字值。 3. 数据采集与处理: STM32内部的ADC(模数转换器)将传感器的模拟信号转换为数字值。然后,微控制器对这些数字值进行处理,可能包括滤波、线性化等操作,以获得更准确的CO2浓度读数。 4. 仿真环境: 本项目提供了一个仿真环境,可能是基于Keil MDK或者IAR Embedded Workbench这样的开发工具。通过这些工具,开发者可以在实际硬件运行之前对代码进行调试和测试,提高开发效率。 5. 通信协议: 在与传感器通信时,STM32可能使用I2C或SPI通信协议。I2C是多设备串行总线,适合短距离、低速通信,而SPI则提供更高的数据传输速率。理解并正确配置这些通信协议是项目成功的关键。 6. 实时操作系统(RTOS): 虽然描述中没有明确提到,但高级项目可能使用RTOS如FreeRTOS或uC/OS,以实现多任务并发执行,比如同时处理传感器数据、显示和网络通信。 7. 硬件接口设计: STM32将通过GPIO口连接到传感器和其他外围设备,如LCD显示屏或无线通信模块,用于数据显示和远程数据传输。 8. 论文: 提供的论文可能详细阐述了项目的理论基础、设计方案、实现过程以及实验结果。阅读并理解论文可以帮助我们更好地了解项目的具体实现和性能评估。 9. 源码: 源码是实现上述功能的编程实现,通常包括初始化配置、中断服务程序、通信函数、数据处理算法等。通过分析源码,可以学习到STM32的编程技巧和实际应用。 10. 系统集成与测试: 所有这些组件需要整合成一个完整的系统,并进行实地测试以验证其性能和可靠性。这包括校准传感器、调整算法参数、优化功耗等方面的工作。 这个项目涵盖了STM32单片机的硬件接口设计、软件编程、传感器数据处理、通信协议等多个IT领域的专业知识,对于学习和实践嵌入式系统设计以及环境监测技术有着很高的参考价值。
2025-04-12 22:23:22 8.71MB
1
使用STM32F103驱动MH-Z14A 二氧化碳(CO2)传感器的代码 只需要将该传感器的串口接口改为你们自己板子的串口即可使用。欢迎大家踊跃讨论!
2024-03-25 18:46:21 6.41MB stm32 arm 嵌入式硬件
1
植物生长讲究适时、适地,也就是对生长环境温度、湿度、光照强度以及土壤条件的需求比较严格,只有给予了植物合适的生长环境,才会有理想的收获,尤其是人工控制生长环境的温室大棚植物,大棚内的温湿度和土壤的温湿度监控对植物的生长至关重要。 本设计以STM32F103C8T6单片机为主控制器,通过温湿度、土壤湿度、光照强度、CO2浓度等传感器和舵机、加热片、风扇、按键等模块实现对温室大棚内环境的检测和控制,OLED(0.96寸)显示各种控制参数,并且通过WiFi模块接入阿里云平台实现温室大棚环境远程的控制与检测。 实验结果表明:该系统实现了对温室大棚内环境的智能检测和控制,传感器采集的环境数据误差较小,采集的温湿度、CO2浓度、光照强度等数据准确度高达99%,舵机、加热片、风扇等控制效果明显,具有很强的安全性和可靠性,且设备成本低同时节省人力物力,提高劳动生产率。
2024-03-19 15:04:03 8.83MB stm32
1
选择山东菜园矿的气煤和山西古交矿的焦煤的平衡水煤样对不同浓度的CH4和CO2混合气体进行了吸附-解吸实验,分析了CH4和CO2在吸附-解吸过程中各组分浓度的变化规律,并探讨分析了实验过程中出现高压阶段吸附量小于低压时的原因.结果表明,不同浓度的CH4和CO2混合气体的解吸曲线都滞后于吸附曲线;相同条件下,焦煤的吸附量大于气煤的吸附量;CO2与CH4浓度之比越大,气体的吸附量越大;吸附过程中,CO2组分的吸附速率是先快后慢,而CH4组分的吸附速率先慢后快,解吸时则相反.吸附和解吸平衡时,游离相中的CO2浓度低于原始混合气体中的CO2浓度,CH4浓度高于原始气体中CH4浓度.实验结果证实了CO2在与CH4的竞争吸附中占据优势,注入CO2可以有效地置换或驱替煤层CH4,注入CO2气体的数量越大、相对浓度越高,单位压差CH4解吸率和CO2吸附率就越高.
2024-02-26 11:49:00 1.81MB 二元混合气体 吸附-解吸 CO2置换
1
负载型纳米ZrO2复合载体的制备条件对CO2重整CH4制合成气的催化剂活性影响,李凝,罗来涛,在制备大孔氧化铝基载体的基础上,采用浸渍-沉淀法制备了负载型纳米ZrO2复合载体,并以此载体负载Ni制成催化剂用于CO2重整CH4制合成�
2024-02-26 11:47:10 333KB 首发论文
1
对焦炭催化CO2重整甲烷反应机理进行初步分析和探讨,提出L-H机理适合描述焦炭体系下CH4和CO2重整反应。利用最优化方法和统计方法对L-H机理普遍使用的CO2-CH4重整反应动力学模型进行参数估计,获得动力学模型中未知参数,并进行模型辨识,得到了与试验结果较吻合的经验性动力学模型。
2024-02-26 11:44:43 1.31MB 行业研究
1
为实现CO2重整CH4高效转化合成气,以生物质焦为催化剂和吸波介质,开展基于微波辐射的CO2重整CH4制备合成气的实验研究,主要考察反应温度、CO2与CH4摩尔比、生物质焦添加量以及水蒸汽的引入等条件对重整反应转化合成气的影响特性。研究表明,提高反应温度,加大CO2与CH4摩尔比以及增加生物质焦添加量均可促进反应气向合成气转化,但对合成气品质影响不一,升高温度能够提升合成气中H2与CO的比值,而加大CO2与CH4摩尔比和增加生物质焦添加量均会降低H2与CO的比值。水蒸汽的引入强化重整反应的进行,促使合成气中氢碳比的提高。
2024-02-26 11:42:08 902KB 生物质焦
1