智慧医疗肺部CT检测数据集VOC+YOLO格式4103张12类别是一套专为智慧医疗应用而设计的肺部CT影像资料集。该数据集包括4103张肺部CT扫描图片,全部以Pascal VOC格式和YOLO格式进行标注。每张图片都对应有VOC格式的.xml标注文件和YOLO格式的.txt标注文件,用于描绘图片中的12种不同的肺部异常情况。 数据集共分为12个类别,包括:主动脉扩张(Aortic enlargement)、肺不张(Atelectasis)、钙化(Calcification)、心脏肥大(Cardiomegaly)、实变(Consolidation)、间质性肺病(ILD)、浸润(Infiltrate)、结节-肿块(Nodule-Mass)、胸腔积液(Pleural effusion)、胸膜增厚(Pleural thickening)、气胸(Pneumothorax)和疤痕(Scarring)。每个类别在数据集中均有特定数量的标注框,例如主动脉扩张有2540个标注框,肺不张有79个标注框等,总计标注框数为12738。 值得注意的是,该数据集在YOLO格式中的类别顺序并不按照上述列表排列,而是以labels文件夹中的classes.txt文件为准。使用该数据集的用户在进行模型训练时需要注意这一点。 该数据集采用了labelImg这一标注工具进行矩形框标注,对于标注的规则非常明确。标注过程中,标注者需要根据肺部CT影像的特点,识别出上述的12种肺部病变情况,并在影像中画出矩形框以准确地界定这些病变区域。 数据集的所有图片都经过了准确而合理的标注,以保证其用于医学影像分析与机器学习模型训练时的准确性。然而,数据集的提供方并未对该数据集训练出的模型精度或权重文件作出任何保证,这意味着用户在使用该数据集训练模型时,仍需自行进行模型性能的评估和校验。 此外,数据集不包含分割路径的txt文件,仅包含jpg图片以及对应的VOC格式xml文件和YOLO格式txt文件。数据集的使用者可以通过图片预览来了解数据集的质量和内容。在实际应用中,该数据集可支持医学图像分析、计算机辅助诊断、图像分割以及深度学习模型训练等多种智慧医疗研究与开发活动。
2025-12-05 10:04:08 1.01MB 数据集
1
数据集介绍 包含216个病例的349张CT照片,从新冠相关的paper中搜集。 COVID-CT数据集包含349张CT图像,这些图像来自216名患者,展示了COVID-19的临床发现。这些图像位于./Images-processed/CT_COVID.zip中。非COVID的CT扫描图像则位于./Images-processed/CT_NonCOVID.zip中。我们提供了数据分割信息,位于./Data-split目录下。关于数据分割的详细信息,请参阅README文件中的DenseNet_predict.md部分。元信息(如患者ID、患者信息、DOI、图像描述等)可以在COVID-CT-MetaInfo.xlsx文件中找到。这些图像是从medRxiv、bioRxiv、NEJM、JAMA、Lancet等期刊的COVID19相关论文中收集的。通过阅读论文中的图注,筛选出包含COVID-19异常的CT图像。
2025-11-19 23:14:44 85.82MB 数据集
1
在进行qPCR实验后,对数据的处理是分析实验结果的重要步骤。qPCR数据处理通常涉及对原始荧光数据的转换和分析,目的是得到目标基因与内参基因的CT值(Ct值是循环阈值,表示每个反应管内的荧光信号达到设定阈值的循环数),进而进行相对定量分析或绝对定量分析。在常规的qPCR数据处理中,需要进行数据的初步整理、标准曲线的建立、以及计算目标基因的表达量等。传统方法中,这些步骤往往耗时且容易出错,尤其是当样本数量较多时,手动处理数据的效率较低。 “待毕业的科研Dog”在B站分享的qPCR数据处理方法,通过提供一种模板化的处理方案,显著简化了数据处理的流程。该模板化的处理方案的核心在于,用户只需将qPCR实验中获取的目标基因和内参基因的CT值填入模板中,模板就会自动进行后续的计算,从而快速得出可用于作图的原始数据。这样不仅提高了数据处理的效率,也降低了人为操作中可能出现的错误。 在实际操作中,用户首先需要确保qPCR实验的准确性,实验中使用的内参基因和目标基因的扩增效率应当相近,以保证后续计算的准确性。实验完毕后,利用已有的qPCR设备软件或第三方软件,如Excel、R语言等,可以获取到样本的CT值。之后,只需将这些CT值按照模板所要求的格式进行替换。由于模板已预设了计算公式和逻辑,因此用户无需手动进行任何复杂的计算,即可得到目标基因表达量的相对值或绝对值。 当然,即使是快速的数据处理模板也应遵循一定的科学原则和统计方法。在应用模板进行数据处理时,应注意以下几点: 1. 确认实验数据的有效性,排除掉扩增曲线不理想或CT值异常的样本数据。 2. 检查实验中使用的内参基因表达是否稳定,它是计算目标基因表达量的基础。 3. 考虑到批次效应,对于不同批次的实验,应确保实验条件和操作的一致性。 4. 遵循科学的统计原则,对结果进行适当的统计分析,避免错误的结论。 值得一提的是,qPCR数据处理模板化有助于科研人员节省大量的时间,使其可以将更多的精力投入到实验设计、数据分析和论文撰写等更有价值的科研活动中去。同时,模板化处理也有利于实验结果的复现和验证,便于同行间的交流和研究。 qPCR数据处理模板的出现,极大地提高了数据处理的速度和准确性,为科研工作者提供了极大的便利。但是,使用模板的同时,也应遵循科学原则和严谨的态度,保证数据处理的质量和结果的可靠性。通过模板化的数据处理,研究人员可以更加专注于实验的创造性和科学的探究,为科研工作的高效和质量提升提供了有力支持。
2025-11-04 13:19:11 12KB
1
在医学影像学领域,快速准确地识别病变是临床诊断的关键。本发明提出了一种基于YOLO(You Only Look Once)卷积神经网络的胆石病CT医疗图像快速识别方法。YOLO算法是一种以速度见长的深度学习模型,它将目标检测问题转化为单个回归问题,将图像分割成一个个格子,在每个格子中预测边界框和概率。该技术对于实时目标检测具有高效、快速的优点。 在胆石病的CT图像识别中,传统的图像处理方法常常受限于复杂的背景和不明显的病变特征,而基于YOLO卷积神经网络的方法则能高效地从复杂的医学图像中提取并识别出胆石的存在。此方法的实现主要通过以下几个步骤:首先是图像预处理,包括图像的缩放、归一化等操作,以适应神经网络的输入要求;其次是网络训练,通过带有标签的胆石病CT图像样本训练YOLO模型,使其能够学习到胆石的特征;接着是识别,训练完毕的模型能够在新的CT图像中快速地定位并识别出胆石;最后是结果输出,将识别出的胆石病变区域以直观的方式显示出来,供医生进行诊断参考。 本发明不仅提高了胆石病诊断的准确率和速度,还降低了医生的工作强度。YOLO算法的实时性让它在医疗领域具有广泛的应用前景,特别是在急诊情况下的快速筛查。此外,本方法还可推广应用于其他类型的医学影像分析,如肝脏、肺部等其他器官的疾病识别。 由于YOLO卷积神经网络的结构特点,本发明的识别系统在处理医疗图像时不仅速度快,而且准确率高,这对于推动智能医疗和远程医疗服务的发展具有重要意义。随着深度学习技术的不断进步和医疗数据的积累,此类基于人工智能的医疗诊断技术有望成为未来医疗领域的主流。 本发明的提出者显然深刻认识到了实时准确识别疾病的重要性,并将人工智能技术尤其是深度学习中的YOLO算法与医疗图像处理相结合,实现了对胆石病的快速、自动化诊断。这不仅能够有效辅助医生的诊断工作,还可能对未来医学影像学的发展方向产生重大影响。 本方法的实施,可以极大地提高医疗机构对胆石病诊断的效率和准确性,对于提高患者救治成功率、减少医疗错误和减轻医疗资源压力都有显著贡献。同时,该技术的推广应用有望成为医疗行业的一个新的增长点,带动相关技术和服务的发展。基于YOLO卷积神经网络的胆石病CT图像快速识别方法,为智能医疗领域提供了新的思路和工具,具有深远的现实意义和广阔的应用前景。
2025-10-11 16:44:54 516KB
1
样本图:blog.csdn.net/2403_88102872/article/details/144255417 文件放服务器下载,请务必到电脑端资源详情查看然后下载 重要说明:数据集部分有增强,占比大约是1/3 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5040 标注数量(xml文件个数):5040 标注数量(txt文件个数):5040 标注类别数:6 标注类别名称:["Prosthesis","Root Canal","caries","impaction","restoration","root stump"] 每个类别标注的框数: Prosthesis 框数 = 4770 Root Canal 框数 = 5759 caries 框数 = 5242 impaction 框数 = 5225 restoration 框数 = 5348 root stump 框数 = 2052 总框数:28396 使用标注工具:labelImg
2025-09-08 15:29:04 407B 数据集
1
DICOM文件格式全称为数字成像和通信在医学(Digital Imaging and Communications in Medicine),它是医学影像和通信领域中广泛采用的国际标准。DICOM标准包括文件格式、网络协议和数据交换的标准。该标准使得不同厂商生产的医疗成像设备能够交换和处理医学影像数据。 DICOM文件不仅包含了图像数据,还包含了丰富的元数据信息,如患者信息、成像参数、注释等。这些信息对于医生进行诊断至关重要,例如,DICOM图像中可以包含患者姓名、性别、出生日期、成像部位、成像时间、设备参数等详细数据,这些数据可以帮助医生准确定位病变位置,了解病变形态,从而做出更准确的诊断。 肺部的CT图像是一种利用计算机断层扫描技术获取的肺部横截面图像,通过这种技术可以清晰地显示肺部组织和器官的三维结构,对于诊断肺炎、肺结核、肺癌、肺气肿等肺部疾病具有重要意义。CT图像可以在不同层面以不同的视角展现肺部结构,有助于医生从多角度观察和分析疾病。 在医学研究和教育领域,肺部的CT图像DICOM文件可以作为案例进行研究,通过分析这些图像来研究疾病的发病机制、影像特征和治疗效果。在医学教育中,利用真实的肺部CT图像DICOM文件,可以让医学生更加直观地了解人体解剖结构和常见病变,从而加深对医学知识的理解。 医疗成像设备包括CT、MRI、超声、X光机等,这些设备生成的医学图像都可以存储为DICOM格式。在临床实践中,医生和放射科技师需要熟悉DICOM文件的读取和操作,以便正确地处理和分析影像数据。同时,医疗信息管理系统通常需要集成DICOM标准,以支持不同医疗设备之间的数据共享和交换。 DICOM文件可以通过专业的医学影像软件进行查看和分析,这些软件可以支持对图像进行各种处理,如调整亮度和对比度、窗宽窗位调整、多平面重建、三维重建等,这些功能对于提高图像质量和诊断精确度至关重要。 DICOM文件的重要性不仅在于存储和传输医学影像数据,更在于其推动了医疗行业的数字化进程,提高了医疗服务的效率和质量。随着医疗技术的不断进步,DICOM标准也在持续发展和完善,以适应新的医疗影像技术和服务模式。 医疗行业对DICOM文件的需求不断增加,因此产生了各种相关的医学影像存档与通信系统(Picture Archiving and Communication System,PACS),PACS系统能够帮助医院存储、检索、管理、分发医学影像数据,提高了医院的工作效率和医疗服务水平。 由于DICOM文件包含了敏感的患者信息,因此在使用和传输过程中必须遵守相关的隐私保护和数据安全规定,以防止患者信息泄露。医疗行业对数据保护的要求非常严格,因此许多国家和地区都有关于医疗数据保护的法律法规,确保患者的隐私权益得到保障。 医疗图像分析是医疗诊断的重要辅助工具,医生通过观察医学图像中的细节,可以对病情进行更为深入的分析。例如,在肺部CT图像中,医生可以寻找肺部病变的征象,如肺结节、空洞、磨玻璃影等,这些征象有助于诊断肺部感染、肿瘤等疾病。此外,医生还可以通过测量病变的大小、形状和密度,来评估病变的严重程度和治疗效果。 医学图像分析不仅限于CT,还包括磁共振成像(MRI)、正电子发射断层扫描(PET)、超声以及X射线成像等技术。每种技术都有其独特的应用范围和优势,不同的成像技术可以根据具体病情和诊断需要选择使用。例如,MRI适合用于中枢神经系统、关节和软组织的成像;PET扫描则主要用于肿瘤的早期诊断和分期。 现代医学影像技术的发展为早期发现和有效治疗疾病提供了可能。通过高分辨率的成像设备和图像处理技术,医生可以更早地发现微小病变,从而提前进行干预和治疗。医学图像分析技术的进步也推动了个性化医疗和精准治疗的发展,使得疾病的治疗更加高效和精确。 医学影像数据的管理和存储是现代医疗信息系统的重要组成部分。随着医学影像数据量的不断增长,如何有效存储和快速检索这些数据成为了一个挑战。为此,医院和研究机构通常会采用高效的数据存储和备份方案,以确保影像数据的安全性和可用性。同时,医疗影像数据的共享和远程诊断也逐渐成为趋势,这有助于提高医疗资源的利用效率,特别是在资源匮乏的地区。 医学影像技术的未来发展将更加注重人工智能和机器学习的应用,这可以帮助医生提高诊断的速度和准确性。通过分析大量的医学影像数据,人工智能算法可以学习到各种疾病的影像特征,并辅助医生进行诊断决策。此外,人工智能还可以帮助医生从影像数据中自动提取有用的信息,如病变的大小、形状、纹理特征等,从而减轻医生的工作负担,提高工作效率。 DICOM文件作为医学影像数据的标准格式,在医疗成像和诊断中扮演着至关重要的角色。它不仅保证了医学影像数据的标准化和互操作性,还推动了医疗信息化的发展,提高了医疗服务的质量和效率。随着技术的不断进步和应用领域的拓展,DICOM文件和医学影像技术将在未来的医疗领域发挥更加重要的作用。
2025-09-05 21:26:05 34.26MB DICOM 医学图像
1
该数据集旨在允许测试不同的方法来检查与使用对比度和患者年龄相关的 CT 图像数据的趋势。 基本思想是识别与这些特征密切相关的图像纹理、统计模式和特征,并可能构建简单的工具,在这些图像被错误分类时自动对其进行分类(或查找可能是可疑情况、错误测量或校准不良机器的异常值)
2025-09-03 15:54:02 250.86MB 数据集 医学图像
1
含M.2驱动
2025-08-29 18:17:44 8MB bios
1
基于等距扇形束滤波反投影(FBP)算法推导了一种新的算法求导希尔伯特反投影(DHB)算法,研究了DHB算法在频域对投影的滤波特性。通过理论分析和实验验证,指出由于DHB滤波函数在高频段对于锐截止特性的改善,很大程度上消除了重建图像的抖动现象。并且算法中去掉了反投影算子中的距离加权运算,使计算速度进一步提高。
1
数据集是一个包含腹部CT扫描图像的医学影像数据集,该数据集主要包含用于检测胃癌的腹部CT扫描的轴位切片图像,这些图像最初是在诊断过程中获取的,以识别胃癌的迹象。数据集文件是一个约93.9MB的压缩包,解压后包含一系列腹部CT图像,图像格式可能为DICOM或其他标准医学图像格式。这些图像为研究人员提供了丰富的数据资源,可用于多种医学影像相关的研究和应用开发。数据集的应用 胃癌检测:研究人员可以利用这些CT扫描图像构建和测试算法,以识别CT扫描中的胃癌迹象,从而提高胃癌的诊断准确性和效率。 图像分割:该数据集可用于训练图像分割模型,精确勾勒出腹部器官及潜在肿瘤的轮廓,这对于医学影像分析和诊断具有重要意义。 医学影像研究:研究人员可以利用这些图像探索和创新CT图像分析与处理技术,推动医学影像领域的研究进展。 该数据集专注于胃癌检测相关的腹部CT图像,具有一定的专业性和针对性。虽然其规模可能不如一些大型的多中心、多器官标注的腹部CT数据集(如AbdomenAtlas),但对于专注于胃癌研究或特定医学影像任务的研究人员来说,仍具有较高的价值,需要注意的是,该数据集的规模和标注信息相对有限,如果需要进行更广泛的腹部器官研究或多器官分割任务,可能需要结合其他更大型的数据集(如AbdomenAtlas或AbdomenCT-1K等)来获取更丰富的数据和标注信息。
2025-08-11 00:48:59 89.45MB 机器学习 计算机视觉 图像处理
1