CUDA 编程:基础与实践 CUDA(Compute Unified Device Architecture)是一种由NVIDIA公司推出的编程模型,用于利用GPU(Graphics Processing Unit)的强大计算能力来执行并行计算任务。CUDA编程是实现高性能计算的重要手段,特别是在科学计算、数据分析、机器学习等领域有着广泛应用。 本书《CUDA 编程:基础与实践》由樊哲勇著,旨在通过实例系统地介绍CUDA编程的基础知识和技术。书中分为三个部分: 1. **基础知识**:前12章主要针对初学者,通过一系列简短的示例来引导读者理解CUDA编程的核心概念。这些章节涵盖了GPU硬件结构,CUDA软件开发工具的使用,如CUDA SDK和nvcc编译器。第1章介绍了GPU的基本工作原理和CUDA编程环境。第2章至第4章讲解了CUDA线程组织、程序框架和错误处理机制。第5章探讨了如何实现GPU加速的关键因素,如数据局部性和计算并行度。接着,第6章至第8章详细阐述了CUDA的内存系统,包括全局内存、共享内存、常量内存和纹理内存的使用。第9章介绍了原子操作,这是在并行环境中实现同步和数据一致性的重要工具。第10章讲解了线程束内的基本函数,如同步和同步屏障。第11章和第12章分别讨论了CUDA流和统一内存,前者用于提高并发执行的效率,后者简化了主机与设备间的数据管理。 2. **实践应用**:第13章通过一个具体的分子动力学模拟程序,综合运用前面章节的知识,让读者体验完整的CUDA项目开发过程。这一章不仅加深了对CUDA编程的理解,也展示了CUDA在实际问题解决中的应用。 3. **CUDA库的使用**:第14章介绍了几个常用的CUDA库,包括Thrust、cuBLAS、cuSolver和cuRAND。这些库提供了高级接口,简化了矩阵运算、线性方程组求解和随机数生成等任务的实现,是CUDA编程中不可或缺的工具。 本书适合具有C++编程基础的理工科大学生和研究生,以及任何对CUDA编程感兴趣的读者。通过学习,读者将能够熟练掌握CUDA编程语言,了解并行计算的基本原理,以及如何利用GPU加速计算密集型任务。 作者樊哲勇,作为一名专注于计算凝聚态物理的博士后,拥有丰富的CUDA编程经验,他的CUDA开发项目如GPUMD、GPUGA和GPUQT已在相关领域发表多篇论文。本书的源代码可在GitHub仓库中获取,读者可以在此基础上进行实践和交流。 《CUDA 编程:基础与实践》是一本全面且实用的CUDA编程教程,它不追求涵盖所有的CUDA特性,而是精心挑选了最核心的知识点,旨在帮助读者快速掌握CUDA编程并应用于实际项目中。无论你是初涉GPU计算,还是希望进一步提升CUDA编程技巧,这本书都将是你宝贵的参考资源。
2025-03-23 23:52:12 2.03MB
1
cuda 编程--图像边缘检测的实现
2024-05-24 14:22:39 1.62MB cuda
1
CUDA编程入门教程,非常好用的CUDA入门教程,一看就会,入门变轻松
2023-05-11 23:37:07 1.14MB cuda
1
清华大学CUDA编程教程, 初学者的极品入门教程,作为入门资源很难得.
2022-12-06 10:08:38 6.28MB 清华大学 CUDA 编程教程
1
MPI CUDA编程.pdf WHAT YOU WILL LEARN What MPI is How to use MPI for inter GPU communication with CUDA and OpenACC What CUDA-aware MPI is What Multi Process Service is and how to use it How to use NVIDIA Tools in an MPI environment How to hide MPI communication times
2022-09-29 15:29:34 3.28MB MPI CUDA 并行计算
1
CUDA-API教程
2022-09-24 09:06:35 2.76MB cuda
1
一、环境配置与测试 二、cuda与OpenCV结合方法 三、代码实例:图像均值滤波和图像反色 3.1 代码 3.2 代码说明 3.3 网格大小与线程块大小的确定 3.3.1 网格与线程块大小的限制 3.3.2 如何确定网格大小与线程块大小? 3.4 并行与串行的加速比 四、总结
2022-08-12 14:04:15 46KB opencv C++ GPU并行运算 cuda并行计算
1
第一章导论 1 1.1 从图形处理到通用并行计算 1 1.2 CUDATM:一种通用并行计算架构 3 1.3 一种可扩展的编程模型 3 1.4 文档结构 4 第二章编程模型 7 2.1 内核 7 2.2 线程层次 8 2.3 存储器层次 11 2.4 异构编程 11 2.5 计算能力 11 第三章编程接口 15 3.1 用nvcc编译 15 3.1.1 编译流程 16 3.1.1.1 离线编译 16 3.1.1.2 即时编译 16 3.1.2 二进制兼容性 17 3.1.3 PTX兼容性 17 3.1.4 应用兼容性 18 3.1.5 C/C++兼容性 19 3.1.6 64位兼容性 19 3.2 CUDA C运行时 3.2.1 初始化 20 3.2.2 设备存储器 20 3.2.3 共享存储器 24 3.2.4 分页锁定主机存储器 32 3.2.4.1 可分享存储器(portable memory) 34 3.2.4.2 写结合存储器 34 3.2.4.3 被映射存储器 34 3.2.5 异步并发执行 35 3.2.5.1 主机和设备间异步执行 35 3.2.5.2 数据传输和内核执行重叠 36 3.2.5.3 并发内核执行 36 3.2.5.4 并发数据传输 36 3.2.5.5 流 37 3.2.5.6 事件 41 3.2.5.7 同步调用 42 3.2.6 多设备系统 42 3.2.6.1 枚举设备 42 3.2.6.2 设备指定 42 3.2.6.3 流和事件行为 43 3.2.6.4 p2p存储器访问 44 3.2.6.5 p2p存储器复制 45 3.2.6.6 统一虚拟地址空间 45 3.2.6.7 错误检查 46 3.2.7 调用栈 47 3.2.8 纹理和表面存储器 47 3.2.8.1 纹理存储器 47 3.2.8.2 表面存储器(surface) 60 3.2.8.3 CUDA 数组 65 目录iii 3.2.8.4 读写一致性 66 3.2.9 图形学互操作性 66 3.2.9.1 OpenGL互操作性 67 3.2.9.2 Direct3D互操作性 70 3.2.9.3 SLI(速力)互操作性 82 3.3 版本和兼容性 82 3.4 计算模式 83 3.5 模式切换 84 3.6 Windows上的Tesla计算集群模式 85 第四章硬件实现 87 4.1 SIMT 架构 87 4.2 硬件多线程 88 第五章性能指南 91 5.1 总体性能优化策略 91 5.2 最大化利用率 91 5.2.1 应用层次 91 5.2.2 设备层次 92 5.2.3 多处理器层次 92 5.3 最大化存储器吞吐量 94 5.3.1 主机和设备的数据传输 95 5.3.2 设备存储器访问 96 5.3.2.1 全局存储器 96 5.3.2.2 本地存储器 98 5.3.2.3 共享存储器 99 5.3.2.4 常量存储器 100 5.3.2.5 纹理和表面存储器 100 5.4 最大化指令吞吐量 100 iv CUDA编程指南5.0中文版 5.4.1 算术指令 101 5.4.2 控制流指令 104 5.4.3 同步指令 105 附录A 支持CUDA的GPU 107 附录B C语言扩展 109 B.1 函数类型限定符 109 B.1.1 device 109 B.1.2 global 109 B.1.3 host 109 B.1.4 noinline 和forceinline 110 B.2 变量类型限定符 110 B.2.1 device 111 B.2.2 constant 111 B.2.3 shared 112 B.2.4 restrict 113 B.3 内置变量类型 115 B.3.1 char1、uchar1、char2、uchar2、char3、uchar3、char4、 uchar4、short1、ushort1、short2、ushort2、short3、ushort3、 short4、ushort4、int1、uint1、int2、uint2、int3、uint3、 int4、uint4、long1、ulong1、long2、ulong2、long3、ulong3、 long4、ulong4、float1、float2、float3、float4、double2 115 B.3.2 dim3类型 115 B.4 内置变量 115 B.4.1 gridDim 115 B.4.2 blockIdx 115 B.4.3 blockDim 117 B.4.4 threadIdx 117 B.4.5 warpSize 117 目录v B.5 存储器栅栏函数 117 B.6 同步函数 119 B.7 数学函数 120 B.8 纹理函数 120 B.8.1 纹理对象函数 120 B.8.1.1 tex1Dfetch() 120 B.8.1.2 tex1D() 121 B.8.1.3 tex2D() 121 B.8.1.4 tex3D() 121 B.8.1.5 tex1DLayered() 121 B.8.1.6 tex2DLayered() 122 B.8.1.7 texCubemap() 122 B.8.1.8 texCubemapLayered() 122 B.8.1.9 tex2Dgather() 123 B.8.2 纹理参考函数 123 B.8.2.1 tex1Dfetch() 123 B.8.2.2 tex1D() 124 B.8.2.3 tex2D() 124 B.8.2.4 tex3D() 125 B.8.2.5 tex1DLayered() 125 B.8.2.6 tex2DLayered() 125 B.8.2.7 texCubemap() 125 B.8.2.8 texCubemapLayered() 126 B.8.2.9 tex2Dgather() 126 B.9 表面函数(surface) 126 B.9.1 表面对象函数 127 B.9.1.1 surf1Dread() 127 B.9.1.2 surf1Dwrite() 127 vi CUDA编程指南5.0中文版 B.9.1.3 surf2Dread() 127 B.9.1.4 surf2Dwrite() 128 B.9.1.5 surf3Dread() 128 B.9.1.6 surf3Dwrite() 128 B.9.1.7 surf1DLayeredread() 129 B.9.1.8 surf1DLayeredwrite() 129 B.9.1.9 surf2DLayeredread() 129 B.9.1.10 surf2DLayeredwrite() 130 B.9.1.11 surfCubemapread() 130 B.9.1.12 surfCubemapwrite() 131 B.9.1.13 surfCubemapLayeredread() 131 B.9.1.14 surfCubemapLayeredwrite() 131 B.9.2 表面引用API 132 B.9.2.1 surf1Dread() 132 B.9.2.2 surf1Dwrite() 132 B.9.2.3 surf2Dread() 132 B.9.2.4 surf2Dwrite() 133 B.9.2.5 surf3Dread() 133 B.9.2.6 surf3Dwrite() 133 B.9.2.7 surf1DLayeredread() 134 B.9.2.8 surf1DLayeredwrite() 134 B.9.2.9 surf2DLayeredread() 135 B.9.2.10 surf2DLayeredwrite() 135 B.9.2.11 surfCubemapread() 135 B.9.2.12 surfCubemapwrite() 136 B.9.2.13 surfCubemapLayeredread() 136 B.9.2.14 surfCubemapLayeredwrite() 137 B.10 时间函数 137 目录vii B.11 原子函数 137 B.11.1 数学函数 138 B.11.1.1 atomicAdd() 138 B.11.1.2 atomicSub() 139 B.11.1.3 atomicExch() 139 B.11.1.4 atomicMin() 140 B.11.1.5 atomicMax() 140 B.11.1.6 atomicInc() 140 B.11.1.7 atomicDec() 141 B.11.1.8 atomicCAS() 141 B.11.2 位逻辑函数 141 B.11.2.1 atomicAnd() 141 B.11.2.2 atomicOr() 142 B.11.2.3 atomicXor() 142 B.12 束表决(warp vote)函数 142 B.13 束洗牌函数 143 B.13.1 概览 143 B.13.2 在束内广播一个值 144 B.13.3 计算8个线程的前缀和 145 B.13.4 束内求和 146 B.14 取样计数器函数 146 B.15 断言 147 B.16 格式化输出 148 B.16.1 格式化符号 149 B.16.2 限制 149 B.16.3 相关的主机端API 150 B.16.4 例程 151 B.17 动态全局存储器分配 152 viii CUDA编程指南5.0中文版 B.17.1 堆存储器分配 153 B.17.2 与设备存储器API的互操作 154 B.17.3 例程 154 B.17.3.1 每个线程的分配 154 B.17.3.2 每个线程块的分配 155 B.17.3.3 在内核启动之间持久的分配 156 B.18 执行配置 159 B.19 启动绑定 160 B.20 #pragma unroll 162 B.21 SIMD 视频指令 163 附录C 数学函数 165 C.1 标准函数 165 C.1.1 单精度浮点函数 165 C.1.2 双精度浮点函数 168 C.2 内置函数 171 C.2.1 单精度浮点函数 172 C.2.2 双精度浮点函数 172 附录D C++语言支持 175 D.1 代码例子 175 D.1.1 数据类 175 D.1.2 派生类 176 D.1.3 类模板 177 D.1.4 函数模板 178 D.1.5 函子类 178 D.2 限制 180 D.2.1 预处理符号 180 D.2.2 限定符 180 目录ix D.2.2.1 设备存储器限定符 180 D.2.2.2 Volatile限定符 182 D.2.3 指针 182 D.2.4 运算符 183 D.2.4.1 赋值运算符 183 D.2.4.2 地址运算符 183 D.2.5 函数 183 D.2.5.1 编译器生成的函数 183 D.2.5.2 函数参数 184 D.2.5.3 函数内静态变量 184 D.2.5.4 函数指针 184 D.2.5.5 函数递归 185 D.2.6 类 185 D.2.6.1 数据成员 185 D.2.6.2 函数成员 185 D.2.6.3 虚函数 185 D.2.6.4 虚基类 185 D.2.6.5 Windows相关 185 D.2.7 模板 186 附录E 纹理获取 187 E.1 最近点取样 187 E.2 线性滤波 187 E.3 查找表 189 附录F 计算能力 191 F.1 特性和技术规范 191 F.2 浮点标准 195 F.3 计算能力1.x 198 x CUDA编程指南5.0中文版 F.3.1 架构 198 F.3.2 全局存储器 199 F.3.2.1 计算能力1.0和1.1的设备 199 F.3.2.2 计算能力1.2和1.3的设备 199 F.3.3 共享存储器 201 F.3.3.1 32位步长访问 201 F.3.3.2 32位广播访问 202 F.3.3.3 8位和16位访问 205 F.3.3.4 大于32位访问 205 F.4 计算能力2.x 206 F.4.1 架构 206 F.4.2 全局存储器 208 F.4.3 共享存储器 209 F.4.3.1 32位步长访问 209 F.4.3.2 大于32位访问 210 F.4.4 常量存储器 211 F.5 计算能力3.x 211 F.5.1 架构 211 F.5.2 全局存储器访问 212 F.5.3 共享存储器 213 F.5.3.1 64位模式 213 F.5.3.2 32位模式 213 附录G 驱动API 215 G.1 上下文 218 G.2 模块 219 G.3 内核执行 220 G.4 运行时API和驱动API的互操作性 222 G.5 注意 223
2022-07-27 17:18:59 1.21MB cuda
1
适用于VS cuda编程移植至Qtcreator,以及使用qt 编写cuda程序的初学者
2022-07-01 21:29:56 404KB CUDA QT qtcuda
1
可复制粘贴 并行计算 CUDA编程 基于GPU-多核-集群等并行化编程 并行机编程
2022-05-25 10:48:18 1.65MB bbbb
1