在电力电子领域,Simulink被广泛用于设计和仿真各种电源转换系统,如PFC(功率因数校正)和DC-DC转换器。本文将深入探讨标题和描述中涉及的"simulink仿真-PFC、DC-DC"的相关知识点。 我们来看功率因数校正(PFC)。PFC是一种技术,旨在改善电网负载的功率因数,减少无功功率的消耗,从而提高电能利用率。在单相AC/DC有源功率因数校正中,通常采用两种主要方法:升压(Boost)拓扑和有源前端(AFE)拓扑。APFCSigAC_DC.slx模型可能是对这种校正过程的仿真。该模型可能包括交流输入滤波器、功率开关元件(如IGBT或MOSFET)、电感、电容和控制电路,通过调节开关频率和占空比来调整电流相位,使其与电压相位接近,从而提高功率因数。 接下来,我们讨论DC-DC转换器。这是一种用于在直流电源之间转换电压的设备,广泛应用于各种电子设备中。在标签中提到的DC-DC PFC可能是指PFC后连接的DC-DC转换器,用于进一步调整电压水平。以下是一些常见的DC-DC转换器拓扑: 1. **Buck转换器**(Buckboost.mdl):这是一种降压-升压拓扑,能在输出电压低于或高于输入电压的情况下工作。通过改变开关元件的占空比,可以调节输出电压。 2. **升压转换器**(Boost.slx):这种拓扑用于将输入电压提升到更高的输出电压。当电源电压恒定时,它可以通过控制开关元件的占空比来改变输出电压。 3. **Buck-Boost转换器**(shengjiang Buck-boost.slx):这种拓扑既可以降低也可以提升输出电压,根据开关状态的不同,它可以工作在降压或升压模式。 在Simulink中,这些模型可能包含输入滤波器、开关元件、电感、电容、控制环路以及必要的保护电路,如过电压、过电流保护。通过仿真,我们可以分析转换效率、动态响应、纹波电压等关键性能指标,以优化电路设计。 "simulink仿真-PFC、DC-DC"涵盖了电力电子中重要的功率转换技术,涉及到的Simulink模型能够帮助工程师理解并优化实际系统的性能。通过这些仿真实验,可以有效地在设计阶段找出问题并进行改进,减少物理原型制作和测试的成本。
2025-09-11 19:54:55 70KB DC-DC
1
在电子产品的电源设计领域,DC-DC转换电路是关键组成部分,它负责将输入的直流电压转换为所需的直流电压,以驱动不同的电子组件。本文将介绍一种经过实践检验的可靠的DC-DC转换电路设计,该设计以LM2567T为关键元件,阐述其设计要点及在多种应用中的优势。 DC-DC转换电路的基本功能是调整电源电压,满足不同电子设备的电源电压需求。此类电路在系统设计中非常重要,尤其当电源电压来源的电压值与负载所需的电压值不匹配时。DC-DC转换器通常分为升压(boost)、降压(buck)和升降压(buck-boost)等几种类型,各自适用于不同的应用场景。 LM2567T作为一款性能优越的DC-DC转换芯片,其工作电压范围为3.5V至35V,可以提供高达1A的输出电流。这款芯片采用开关型工作模式,其高效率和稳定的性能使其成为众多设计工程师的首选。它所具备的良好电磁兼容性和热稳定性使其能够在恶劣的环境下依旧保持稳定的运行状态,有效适应工业、汽车、通信等领域的应用需求。 在电路设计中,输入滤波电容对于减少电源线上的噪声,提供一个平滑的直流输入至关重要。输入滤波电容的选择取决于输入电源的特性以及电路对纹波的要求,它们保证了电路输入端的电压稳定性。此外,输出滤波网络则是由一系列精心选择的电感器、电容器组成,它们进一步降低输出电压的纹波,确保输出电源质量。对于要求严格的场合,如驱动数字电路、微处理器和精密模拟电路,输出滤波网络的性能尤为关键。 实践证明,一个电路是否稳定可靠,需要长时间的运行验证。根据描述,LM2567T组成的DC-DC电路已在产品上连续使用多年而未出现故障,这说明该电路设计合理、元件选用恰当,并且在实际应用中表现出卓越的稳定性和可靠性。同时,转换器在维持低输入纹波的同时,还确保了高效率和良好的滤波效果,这不仅有助于延长负载设备的使用寿命,也有效降低了整体系统的功耗。 在设计DC-DC转换电路时,设计师需综合考虑电源输入范围、输出电压精度、转换效率、纹波抑制、热管理等多个方面。LM2567T的应用案例给出了一个如何进行元器件选择和布局的参考:首先要确保核心芯片的性能与需求相匹配,然后对输入输出端的滤波电容和电感进行精心选择,并对整体布局进行优化,以达到最佳的电磁兼容性,同时也要考虑到热量管理,以确保电路长时间稳定工作。 DC-DC转换电路的设计是一个涵盖广泛电子工程知识的复杂过程。选用合适的转换芯片,如LM2567T,通过精确的理论计算和周到的实际布局,可以实现高效稳定的电压转换。这一设计不仅满足了电子设备对电源的精确需求,同时也保证了设备长期稳定的运行,为众多电子产品提供了一种可靠的电源解决方案。
2025-09-11 11:37:58 75KB DC-DC电路 电路原理图 LM2567T
1
该设计是基于ST的LNBH25器件的DC-DC转换器。它主要用来为碟形天线的LNB电源供电,接收卫星电视信号。LNBH25是一款单片式电压调节器和接口IC,专门用于天线盘中的LNB下变频器或多开关机顶盒提供13/18 V电源和22 kHz音频信号。在这个应用领域,LNBH25提供了一个完整的解决方案,具有极低的元件数量和低功耗,以及简单的设计和I²C标准接口。 该LNB电源电路包含一个I2C总线接口,由于电路采用完全集成的升压型DC-DC转换器,因此可以使用8 V至16 V的单输入电压电源。LNBH25实现机顶盒专用LNB电源电路板实物图: LNBH25实现机顶盒专用LNB电源板特点: LNB和I 2 C总线 之间的完整接口 内置DC-DC转换器,用于单个12 V电源供电和高效率(典型值为93%@ 0.5 A) 可通过外部电阻器选择输出电流限制 22 kHz音频波形的完整性也保证在空载条件下 低降压后置稳压器和高效升压PWM,集成电源N-MOS,可实现低功耗 LPM(低功耗模式)功能可降低功耗 I 2 C诊断位 过载和过热内部保护 LNB短路动态保护 DiSEqC 1.x通信 符合RoHS标准
2025-09-07 14:47:36 435KB dc-dc转换器 电路方案
1
内容概要:本文详细介绍了基于V2G(车到电网)技术的新能源汽车车载双向OBC(车载充电机)的MATLAB仿真模型。系统分为前级双向AC/DC电路和后级双向DC/DC电路。前级电路采用三相Vienna整流器,通过PFC技术将380V三相交流电转换为600V直流电并保持单位功率因数。后级电路为双向CLLC谐振变换器,将600V直流电转换为500V直流电,支持正向充电和反向能量回馈。文中还讨论了控制策略、参数设计、仿真技巧以及实际应用中的注意事项。 适合人群:从事新能源汽车充电系统设计、电力电子仿真及相关领域的工程师和技术人员。 使用场景及目标:适用于研究和开发新能源汽车与智能电网之间的能量交互系统,旨在提高能源利用效率和电网稳定性。具体应用场景包括实验室仿真验证、产品设计优化、控制系统调试等。 其他说明:文章不仅提供了详细的MATLAB/Simulink建模方法,还包括了许多实用的技术细节和调试经验,如电流环控制、谐振参数计算、模式切换逻辑等。此外,还提到了一些常见的陷阱和解决方案,帮助读者更好地理解和掌握双向OBC的设计要点。
2025-07-29 08:48:24 803KB
1
内容概要:本文详细介绍了DC-DC变换中Boost与Buck电路的双闭环控制策略,重点在于通过STM32实现精确的电压调节。文中不仅讲解了电流环和电压环的具体实现方法,如电流环的PID控制算法和电压环的滑动平均滤波,还提供了实用的调试技巧和硬件选型建议。作者强调了电流环的快速响应和电压环的整体稳定性,并分享了一些避免常见问题的经验,如防止MOS管过热和解决振铃现象的方法。 适合人群:从事电源设计的技术人员,尤其是有一定嵌入式系统基础并希望深入了解DC-DC变换电路控制机制的研发人员。 使用场景及目标:适用于需要高精度电压调节的应用场合,如工业自动化设备、通信基站电源管理等。目标是帮助读者掌握双闭环控制的实际应用,提高系统的稳定性和效率。 其他说明:文章结合实际案例和技术细节,为读者提供了一个从理论到实践的完整学习路径。特别提醒了硬件选择的重要性以及软件调试的关键点。
2025-07-15 11:47:32 317KB
1
移相全桥FSFB变换器仿真:隔离型DC-DC输出电压闭环控制测试,在plecs与matlab simulink环境下的应用研究,移相全桥FSFB变换器仿真研究:隔离型DC-DC变换器闭环控制的测试与实践,利用PLECS和MATLAB Simulink平台,移相全桥(FSFB)变器 隔离型DC-DC变器仿真 输出电压闭环控制,采用移相控制方式 测试环境为plecs、matlab simulink ~ ,移相全桥(FSFB)变换器; 隔离型DC-DC变换器仿真; 输出电压闭环控制; 移相控制方式; plecs仿真; matlab simulink测试环境。,移相全桥变换器仿真:隔离型DC-DC输出电压闭环控制测试
2025-07-10 11:05:41 3.19MB edge
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1
【单端反激AC-DC-DC电源设计】是一种常见的电力电子转换技术,适用于小功率应用,例如在10W的范围内。这种电源设计涉及从交流(AC)输入转换为直流(DC)输出,然后再次转换为另一直流电压,以满足特定设备的需求。在本课程设计中,学生需设计一个输入为220V/50Hz三相交流,输出为20V直流,纹波系数小于5%,功率为10W的电源。 设计过程中包括以下几个关键步骤: 1. **主电路设计**:主电路是电源的核心,通常包括输入环节、功率变换电路和控制驱动保护电路。输入环节需要处理浪涌电流和瞬态电压,通常采用限流电阻、热敏电阻或压敏电阻等元件。功率变换电路常采用单端反激拓扑,通过变压器实现能量的隔离和调整。 2. **控制方案设计**:控制方案主要关注如何精确调节输出电压。常见的方法是脉宽调制(PWM),分为电压控制模式和峰值电流控制模式。电压控制模式简单易调试,但瞬态响应较慢,可采用电压前馈模式增强响应速度。峰值电流控制模式则适用于电流波动较大的情况。 3. **滤波参数设计**:滤波器的选择和设计至关重要,它们用于减少输出电压的纹波,确保输出稳定。这通常涉及电容和电感的选择,需要根据电源规格和性能要求进行计算。 4. **MATLAB/Simulink仿真**:利用仿真软件建立闭环系统模型,可以预估电源的工作性能,测试不同工况下的稳定性,为实际硬件搭建提供依据。 5. **仿真结果分析**:通过仿真,分析输出电压、电流、效率等参数,验证设计方案的可行性和优化潜力。 在单端反激电源中,变压器同时扮演着升压或降压的角色,其工作状态在开关器件导通和截止之间切换。当开关器件导通时,变压器储存能量;当开关器件截止,变压器释放能量至负载,实现电压转换。保护电路则确保电源在异常条件下不会受损,如过压、欠压、过流和过温保护。 设计此类电源不仅要求理论知识,还涉及到实践技能,包括电路设计、元器件选择和仿真工具的熟练运用。通过这个课程设计,学生能够深入理解电力电子设备的工作原理,并掌握实际电源设计的基本流程。
2025-05-20 15:38:46 669KB 电力电子 单端反激 电源设计 AC-DC
1
电动汽车车载充电机 (OBC) 与车载 DC/DC 转换器技术 一、高性能电动汽车车载充电机(OBC) 电路 二、双向充电机(Bi-OBC )技术方案 三、车载DC/DC 转换器电路拓扑比较 四、充电桩电力电子变换器 电动汽车车载充电机(OBC,On-Board Charger)与车载DC/DC转换器是现代电动汽车电能管理系统中的关键组件,它们对于车辆的高效运行和电池寿命有着重要影响。本篇文章将详细探讨这两个技术领域的核心概念、工作原理以及相关应用。 一、高性能电动汽车车载充电机(OBC) 车载充电机是电动汽车从电网获取电能并将其转化为适合电池组使用的直流电的设备。高性能的OBC通常具备高效率、快速充电和高功率密度的特点。它们通常由交流输入、功率转换模块、控制电路和安全保护功能组成。OBC的设计要考虑电网适应性,如电压波动、频率漂移等,以及符合国家和地区的电气安全标准。 二、双向充电机(Bi-OBC)技术方案 双向充电机不仅能够为电池充电,还能将电池的电能反馈到电网或为车载电器供电,实现车辆到家庭(V2H)或车辆到电网(V2G)的功能。这种技术提高了电动汽车在能源管理中的灵活性,有助于平衡电网负荷,促进可再生能源的利用。Bi-OBC的关键技术包括双向功率流控制、动态功率分配和精确的电压、电流控制。 三、车载DC/DC转换器电路拓扑比较 车载DC/DC转换器主要用于将电池的高压直流电转换为低压直流电,供给车辆的低压电器系统,如照明、空调、仪表盘等。常见的电路拓扑有 buck、boost、buck-boost 和 Cuk 等。每种拓扑都有其特定的优势和适用场景,例如,buck 拓扑适用于降压,boost 拓扑用于升压,而 buck-boost 和 Cuk 拓扑则能实现升压或降压。选择合适的拓扑需考虑转换效率、体积、成本及稳定性等因素。 四、充电桩电力电子变换器 充电桩作为电动汽车充电基础设施的重要组成部分,其电力电子变换器负责将电网的交流电转换为直流电,通过连接线缆传输到电动汽车的OBC进行充电。变换器的设计需要考虑高效率、高可靠性、低谐波污染、动态响应快等特点,并且需要支持不同充电标准,如CCS、CHAdeMO、GB/T等。 这些技术与光伏逆变、风能逆变、电机驱动和工业电源等领域紧密相关。例如,电动汽车充电技术的发展借鉴了可再生能源领域的电力转换技术,以实现更高效、更环保的能源利用。同时,电机驱动技术的进步也推动了OBC和DC/DC转换器的效率提升。工业电源领域的成熟技术为电动汽车充电设备提供了稳定、可靠的电源解决方案。 总结来说,电动汽车车载充电机和车载DC/DC转换器是电动汽车电气化过程中的核心技术,它们的性能直接影响到电动汽车的使用体验和能源效率。随着新能源汽车市场的快速发展,这些技术将持续演进,为未来的电动汽车提供更加智能化、绿色化的电能管理方案。
2025-05-12 14:35:40 10.35MB 工业电源
1