包括vs2019封装的DDSBusAdapter动态库,DDSBusAdapterTool测试工具,fastddssdk文件 ,sdk解压到D盘根目录,目录结构如下:D:\Fast_DDS_SDK\fastrtps2.8.1 特别说明请使用vs2019最新的包,如果版本过低,会报错(libfastrtps-2.8lib(UDPv6Transport.obj)error LNK2001:无法解析的外部符号_std_system_error_allocate_message) 订阅发布接口使用的时默认参数,测试发现是共享内存(HSM)方式,如果要使用udp或者tcp可以自己添加参数。 共享内存(HSM)方式只能在本机多进程之间进行消息的订阅发布,无法实现多机的订阅发布,要实现多机订阅发布请使用udp或者tcp方式。
2025-12-17 23:05:36 206.02MB
1
摘  要:直接数字频率合成技术是一种新型的信号产生方法,是现代信号源的发展方向。该系统由FPGA 控制模块、键盘、LED 显示组成,结合DDS 的结构和原理,采用SOPC 和DDS 技术,设计出具有频率设置功能的多波形信号发生器。以Altera 公司的CycloneⅡ的核心器件EP2C35 为例,NIOS ⅡCPU 通过读取按键的值,实现任意步进、不同波形的输出显示功能。   0 引 言   直接数字频率合成( Dir ect Dig ital Frequency Synthesis,DDS) 是一种新型的频率合成技术,它把信号发生器的频率稳定度、准确度提高到与基准频率相同的水平,并且可以 直接数字频率合成(DDS)是一种先进的信号生成技术,它通过数字化的方式来合成任意频率的波形,从而提高了信号源的频率稳定性和精度。DDS的核心在于相位累加器、频率控制字和查找表(ROM),这三者共同作用于波形生成。 DDS的基本工作流程如下:频率控制字K在每个时钟周期累加到相位累加器中,相位累加器的输出作为ROM的地址,ROM中存储的是不同波形(如正弦、方波、三角波、锯齿波)的数据。相位累加器的值对应于波形的相位,通过取模操作确保相位值在0到2π之间变化。读取ROM中的数据,经过D/A转换器转化为模拟信号,然后通过低通滤波器平滑处理,最终生成所需的连续波形。 在SOPC(System on a Programmable Chip,可编程芯片上的系统)技术中,DDS信号发生器的设计可以更加灵活和高效。SOPC允许在单个FPGA(Field-Programmable Gate Array,现场可编程门阵列)中集成处理器、存储器和其他逻辑功能,提高了系统集成度。例如,使用Altera公司的Cyclone II系列器件EP2C35,结合嵌入式NIOS II CPU,可以通过读取键盘输入来控制DDS的参数,实现频率、相位和波形的选择。 在本文的设计中,系统由FPGA控制模块、键盘接口、LED显示和D/A转换器组成。FPGA负责执行相位累加等数字逻辑操作,而NIOS II CPU则处理控制任务,如读取按键值,控制DDS输出特定频率和波形的信号。10位加法器与10位寄存器级联形成的累加器模块,可以处理较大的相位范围。存储波形数据的ROM中预先存储了不同波形的样本点,根据相位累加器的输出地址读取相应数据。D/A转换器如AD9742,可以将数字信号转换为模拟信号,经过低通滤波器进一步平滑,生成实际输出的模拟波形。 SOPC架构的优势在于减少了外部扩展电路的需求,提高了系统的稳定性和抗干扰能力,并且节省了硬件资源。此外,这种设计允许在不改变硬件的情况下,通过软件更新来修改或扩展DDS的功能,增强了系统的可配置性和适应性。 基于SOPC的DDS信号发生器设计结合了现代微电子技术的灵活性和DDS的高性能,为通信、测试测量等领域提供了高效、精确的信号源解决方案。通过FPGA的可编程特性,设计人员能够根据具体应用需求定制信号发生器的功能,从而满足多变的工程需求。
2025-12-16 17:48:30 422KB 模拟技术
1
引 言   偏振控制器是一种重要的光器件,在光纤通信和传感领域都有着广泛的应用。在光纤通信系统中,准确地控制光纤中的偏振态,关系着系统的稳定性和数据传输的误码率。然而在消偏型光纤陀螺中,准确测量光的偏振度也是保证光纤陀螺精度的有效措施。因此,偏振控制器(PC)作为一种改变输入光偏振态的光器件是不可缺少的一种偏振控制器件,在PMD动态补偿、偏振度(DOP)测试等方面发挥着重要的作用。   但是在实际运用中,偏振控制器的半波电压与厂家给出的标称值并不完全一致,导致了使用的不便。因此在使用时需要有与之配套的驱动电路。但是,许多厂家并不提供配套的驱动电路,即使提供,价格也昂贵,在实际工程开发中不能
2025-12-09 13:21:16 226KB
1
显示文件新增加的键字: 显示文件增加了下列键字: CSRINPONLY(光标移至仅输入位置) HLPSHELF(帮助书架) MOUBTN(鼠标按键) PSHBTNCHC(按钮开关字段选择) PSHBTNFLD(按钮开关字段) SFLCHCCTL(子文件选择控制) SFLMLTCHC(子文件多项选择表) SFLRTNSEL(子文件返回选择) SFLSCROLL(子文件上卷) SFLSNGCHC(子文件单项选择表) VALNUM(有效数字) WDWTITLE(窗口标题) WRDWRAP(字卷) 这些键字在第三章“显示文件”按字母顺序来讲述。 加到DBCS设备中一些新的显示文件键字(具有调用日语DDS的能力): 下面键字加到显示文件中: GRDATR(坐标属性) GRDBOX(坐标框) GRDCLR(坐标清除) GRDLIN(坐标行) GRDRCD(坐标记录) 这些键字在附录E中以字母顺序来讲述。 以下新的键字加到系统内部通讯功能文件中: PRPCMT(准备落实) RCVROLLB(接收返回响应指示器) RCVTKCMT(接收取落实响应指示器) TNSSYNLVL(转换同步级) 这些键字在第五章“系统内部通讯功能文件”中以字母顺序讲述。 下面键字加到DBCS文件中: CNTFLD(续行项字段) 这个键字在附录E中讲述。 以下是显示文件中修改过的键字: EDTWRD(编辑字) MLTCHCFLD(多项选择字段) MNUBAR(菜单项) PULLDOWN(下拉菜单) RTNCSRLOC(返回光标位置) SFLEND(子文件结束) SFLRCDNBR(子文件记录号) SFLSIZ(子文件大小) SNGCHCFLD(单项选择字段) WINDOW(窗口) 这些键字在第三章“显示文件”中以字母顺序讲述。 以下是打印文件修改过的键字: GDF(图形数据文件) OVERLAY(复盖) PAGSEG(页段) 这些键字在第四章“打印文件”中以字母顺序讲述。 系统内部通讯功能文件修改过的键字: SYNLVL(同步级) 这个键字在第五章“系统内部通讯功能文件”中讲述。 需在打印设备描述中有AFP(*YES)的键字: 对于V3R1,这种先进功能的打印系统(AFP)是做为OS/400中称作打印服务设备/400(PSF/400)的独立部分定购的。为了能够打印特殊值的某些键字所规定的值,需要PSF/400。这些键字在4.2中讲述。 《DDS参考手册中文版》是针对AS400系统中数据描述规范(Data Description Specifications,简称DDS)的详细指南,涵盖了DDS的使用方法、语法规则以及相关文件类型的定义和修改。DDS是IBM i(以前称为AS/400)操作系统中用于定义数据库文件结构的关键工具。 在本手册中,新增的键字主要涉及显示文件、DBCS设备、系统内部通讯功能文件和打印文件。例如,显示文件中增加了`CSRINPONLY`,用于将光标设置在仅输入状态,`HLPSHELF`则与帮助书架功能相关,`SFLRTNSEL`则处理子文件返回选择等。这些键字的引入丰富了用户界面和交互性。 DBCS设备中,如`GRDATR`、`GRDBOX`等键字增强了处理双字节字符集(DBCS)的能力,特别是支持日语等多语言环境的显示。系统内部通讯功能文件新增的`PRPCMT`、`RCVROLLB`等则优化了系统间的通信效率和响应机制。 在打印文件方面,`GDF`和`OVERLAY`等键字的修改,可能涉及到更复杂的图形数据处理和页面覆盖功能。同时,系统内部通讯功能文件的`SYNLVL`同步级的更新,可能涉及到了数据同步策略的改进。 此外,DDS的使用包括了创建文件、定义物理文件和逻辑文件的步骤。物理文件定义了实际存储数据的结构,而逻辑文件则提供了访问这些数据的不同方式,如单格式和多格式逻辑文件,以及连接逻辑文件。每个字段有其特定的定义,如长度、数据类型、编辑码等,如`EDITCODE`和`EDITWORD`用于数据输入时的格式化和验证。 在显示文件中,位置项和键字项的详细说明,如`WINDOW`、`RTNCSRLOC`、`SFLSIZ`等,定义了屏幕布局、光标移动和子文件操作。这些元素对于创建用户友好的交互式终端应用至关重要。例如,`WINDOW`键字可以设定屏幕区域,`RTNCSRLOC`用于控制返回时光标的定位,而`SFLSIZ`则指定了子文件的大小。 《DDS参考手册中文版》提供了一套全面的指导,帮助开发者和管理员理解和利用DDS设计和管理AS400系统的数据库和用户界面,以实现高效的数据存储和交互。对于AS400环境下的应用程序开发和维护,这份手册是不可或缺的参考资料。
2025-11-26 11:15:28 2.12MB AS400
1
内容概要:本文详细介绍了一项基于Vivado平台的AD9164 FPGA接口设计工程,旨在实现3G采样率的数据传输。工程主要包括JESD204B接口模块、DDS IP核模块和SPI寄存器配置模块。JESD204B接口模块负责高速数据传输,线速率达到5Gbps;DDS IP核模块包含4个DDS IP核,用于生成多频率信号;SPI寄存器配置模块则用于配置AD9164及其他外设的寄存器。此外,文中还涉及顶层控制模块,负责时钟管理和各模块间的协调工作。通过详细的代码示例和分析,展示了如何构建稳定的高速数据传输链路,并提供了许多实用的技术细节和调试技巧。 适合人群:具备一定FPGA开发经验和Verilog编程基础的研发人员,尤其是从事高速数据采集和信号处理领域的工程师。 使用场景及目标:适用于需要实现高速数据传输和多通道信号生成的应用场景,如雷达系统、通信基站等。目标是帮助工程师掌握AD9164接口设计的关键技术和最佳实践,提高系统的稳定性和性能。 其他说明:文中不仅提供了详细的代码实现,还分享了许多宝贵的实战经验和技术细节,有助于读者更好地理解和应用相关技术。
2025-11-06 15:33:52 1.31MB
1
基于stm32单片机实现函数发生器功能,可生成任意频率,任意占空比,任意幅值(0~3.3V)的正弦波、方波、三角波。可直接配套正点原子探索者stm32F407ZGT6使用,无需改动任何代码,可供大家学习使用。 本文介绍了一种基于STM32F407单片机的直接数字合成(DDS)函数发生器的设计与实现,该发生器能够生成具备任意频率、任意占空比以及0到3.3伏特幅值变化的正弦波、方波和三角波。这类发生器广泛应用于电子工程领域,如通信、测试、信号分析等,为工程师提供了方便快捷的信号源解决方案。 该DDS函数发生器的设计使用了软件与数字模拟转换器(DAC)的配合方式,通过软件编程实现了波形的生成和参数调整。利用STM32F407单片机强大的处理能力和丰富的外设接口,可以精确控制波形的频率、占空比和幅值。正点原子探索者stm32F407ZGT6开发板由于其优越的性能和稳定的运行,被选用为此项目的硬件开发平台,便于用户直接使用,而无需修改代码,非常适合用于学习和研究。 在工程实践中,DDS技术是现代信号发生器设计的重要基础,它通过对一个已知频率的基准时钟进行数字处理,生成特定频率的模拟信号输出。在本项目中,开发人员需要编写相应的软件算法,例如快速傅里叶变换(FFT)或查表法来产生所需波形,并通过DAC转换为模拟信号。此外,实现波形的精细调整还需要对单片机的定时器、PWM(脉冲宽度调制)功能以及模拟外设进行精确编程和调试。 在代码实现方面,keilkilll.bat文件可能是一个用于Keil uVision IDE环境的批处理脚本,用于简化编译、调试或是下载程序到开发板的过程。readme.txt文件则可能是说明文件,提供项目安装、配置和使用的基本指南。至于目录列表中的CORE、README、OBJ、SYSTEM、FWLIB、USER、HARDWARE等文件夹,它们通常包含了项目的核心代码、项目说明、编译后的目标文件、系统配置、固件库文件、用户代码以及硬件抽象层代码等重要元素。 本项目不仅提供了一个功能完备的信号发生器设计,而且还具有易于使用的特性,对于学习和掌握基于STM32F407的微控制器开发与应用具有很高的实用价值。
2025-10-30 14:11:39 10.96MB stm32
1
一款基于FPGA的DDS(直接数字合成)波形发生器的设计,涵盖Verilog代码编写、四种波形(正弦波、方波、三角波、锯齿波)的切换、调频调幅等功能。文中不仅提供了具体的Verilog代码示例,还包含了详细的使用说明和仿真教学视频,帮助读者全面理解并实际操作FPGA与DDS波形的交互。通过实例代码、使用说明和视频教程,深入探讨了FPGA与DDS波形的互动关系及其应用。 适合人群:对FPGA编程感兴趣的电子工程学生、硬件开发者和技术爱好者。 使用场景及目标:适用于需要生成不同波形信号的场合,如通信系统、雷达测试、音频处理等。目标是让读者掌握FPGA编程技巧,尤其是DDS波形发生器的设计与实现。 其他说明:本文提供的资源包括完整的Verilog代码、详细的使用说明文档和仿真教学视频,确保读者可以顺利上手并完成相关实验。
2025-10-24 14:34:16 5.51MB
1
STM32F429I-DISCOVERY是ST公司推出的基于STM32F429ZIT6的探索套件。套件外设丰富,并且将所有引脚均引出,极方便用户的拓展和探索高性能的Cortex-M4内核! 本设计是基于STM32F429I-DISCOVERY制作的DDS函数发生器,可以通过触摸屏或PC软件来显示和控制。 触摸显示和控制: PC软件显示和控制: 主要功能如下: 波形输出:矩形波、锯齿波、正弦波、三角波 DAC分辨率:12位 频率范围:1Hz-50KHz 幅度:0-3.3V 在当今快速发展的电子行业,STM32F429I-DISCOVERY开发板因其高性能Cortex-M4内核以及丰富的外设成为工程师和爱好者的理想选择。基于这款开发板设计的DDS函数发生器,提供了灵活的波形输出能力,可以生成矩形波、锯齿波、正弦波和三角波等多种波形,对于电子测量、通信和控制系统等领域具有重要应用价值。 DDS函数发生器的核心是直接数字合成(Direct Digital Synthesis)技术,它允许用户通过数字方式精确控制输出波形的频率、幅度和形状。在本设计中,DDS函数发生器能够实现1Hz至50KHz的宽频率范围,以及0至3.3V的输出幅度,这为各种应用场景提供了足够的灵活性和扩展性。通过触摸屏或PC软件的交互界面,用户能够轻松地设置波形参数并实时观察波形的变化,极大地方便了用户在进行电子设计和测试时的波形调试工作。 设计中的DAC(数字模拟转换器)分辨率为12位,这意味着它可以提供4096个不同的输出电平,从而确保了波形的平滑度和精确度。高分辨率的DAC配合DDS技术,保证了输出波形的质量,使其能够满足对波形精度有较高要求的专业应用。 本设计还提供了完整的源代码和电路原理图,这些资料对于理解DDS函数发生器的工作原理和开发过程至关重要。通过原理图,硬件工程师可以清楚地了解各个组件之间的连接关系,以及如何将STM32F429I-DISCOVERY开发板连接到其他电路中去。而源代码则为软件开发者提供了基础,他们可以通过分析和修改这些代码来进一步开发或定制功能,以适应特定的应用场景。 文件名称列表中的stm32f429i-disco.zip和generator.zip文件可能包含了上述提及的源代码和软件程序,而stm32f429i-disco_sch.zip文件则应为电路原理图的压缩包。DDS_Generator_UB.zip文件可能包含了PC端的上位机程序,用于与DDS函数发生器的硬件进行通信和控制。 基于STM32F429I-DISCOVERY的DDS函数发生器不仅为用户提供了一个高效、可靠的波形生成解决方案,而且其开源的设计资料也为电子工程师和爱好者提供了一个学习和实践的平台,有助于推动电子技术的创新和应用。
2025-10-07 18:25:55 3.33MB stm32
1
基于FPGA的DDS信号仿真,DDS技术是一种通过数字计算生成波形信号的方法,其核心原理是利用数字相位累加器和波形查找表(ROM)生成高精度、频率可调的波形信号。DDS系统的主要组成部分包括频率控制字(Fword)、相位累加器、相位控制字(Pword)和波形查找表。在DDS系统中,频率控制字决定了输出波形的频率。频率控制字越大,相位累加器每个时钟周期增加的相位值就越大,从而输出波形的频率越高。相位累加器是DDS系统的核心部件,用于累加频率控制字。在每个时钟周期,相位累加器会将上一个周期的累加值与频率控制字相加,生成新的相位值。这个相位值用于波形查找表的地址生成。相位控制字用于实现相位偏移,通过将相位控制字加到相位累加器的输出中,可以实现输出波形的相位偏移,从而便于同步或相位调制等应用。波形查找表存储了一个周期波形的数据,例如正弦波、方波和三角波。相位累加器的输出作为地址输入到波形查找表,查找到相应的波形数据输出。 波形ROM模块通过查找表方式存储和输出波形数据。每种波形的数据表根据相应的波形公式预先计算并存储在ROM中。在系统运行过程中,DDS模块根据当前相位值读取ROM中的波形数据。
2025-09-12 18:17:50 34.95MB fpga开发 vivado
1
内容概要:本文深入解析了2025年电子设计大赛G题《电路模型探究装置》,涵盖了从原理到代码实操的各个方面。文章首先介绍了G题的基本情况及其对参赛者的全方位挑战,随后详细剖析了题目的基本要求,包括信号调节、正弦信号生成、输出信号幅度设定和幅频曲线反推等内容。接着探讨了发挥部分,如未知模型电路学习与建模及信号还原的原理和方法。在软件代码实现方面,分别介绍了DDS信号生成、信号采集与处理、模型学习与信号还原的代码框架。此外,文章还分享了硬件与软件协同调试、优化代码性能以及比赛时间管理的实战技巧。最后,总结了G题的要点,并展望了电子设计大赛未来的发展趋势。 适合人群:对电子设计充满热情的爱好者、希望在电子设计大赛中取得优异成绩的参赛者、以及希望提升自己电路设计和编程能力的技术人员。 使用场景及目标:①理解电路模型探究装置的工作原理和实现方法;②掌握DDS信号生成、信号采集与处理、模型学习与信号还原的具体实现;③学习硬件与软件协同调试、优化代码性能及合理管理比赛时间的技巧;④为未来的电子设计大赛做准备,提升自己的技术水平和创新能力。 阅读建议:本文不仅提供了详细的理论解释,还附带了大量的代码示例和实战技巧,因此在阅读过程中应结合实际操作进行学习。特别是对于代码部分,建议读者亲自编写和调试代码,以便更好地理解和掌握相关知识点。同时,读者还可以尝试复现文中的实验,以加深对电路模型探究装置的理解。
1