人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
带有随机回归系数线性模型中的最佳二次无偏估计,刘绪庆,吴延东,对带有随机回归系数线性模型中的联合二次函数的最佳二次无偏估计问题进行了讨论。
2024-02-25 22:56:32 317KB 首发论文
1
Density Estimation for Statistics and Data Analysis, Silverman著, 1986年版,核密度估计教材
2024-01-09 16:20:52 5.05MB Density Estimation
1
Matlab进行最小二乘算法,简单的小程序,用于测绘平差
2023-10-17 22:08:22 3KB Matlab LSE
1
本论文描述了LTE-A系统中的信道估计算法
2023-10-17 18:00:38 188KB 信道估计
1
用CNN做rul.通过卷积神经网络测得轴承的剩余使用时间。用来做轴承寿命预测RUL,包括训练集和测试集两部分,还有说明文档pdf
2023-09-10 23:12:23 2.1MB CNN RUL
1
state estimation for robotics. This book is intended for students and practitioners of robotics who are interested in using noisy sensor data to estimate the position, orientation, and other state variables of robots as they move through the three-dimensional world. It covers classical and modern techniques commonly used in robotics today.
2023-08-02 04:55:16 4.48MB SLAM
1
目标跟踪和碰撞时间估计 这是Udacity传感器融合纳米度的第二个项目。 我融合了来自KITTI数据集的相机和LiDAR测量值,以检测,跟踪3D空间中的物体并估算碰撞时间。 首先,我用YOLOv3处理图像以检测和分类对象。 下图显示了结果。 基于YOLOv3发现的边界框,我开发了一种通过关键点对应关系随时间跟踪3D对象的方法。 接下来,我使用了两种不同的方法来计算碰撞时间(TTC),分别是基于LiDAR和基于相机的TTC。 环境的结构由主要讲师Andreas Haja构建。 基于LiDAR的TTC 我通过使用齐次坐标将前车的3D LiDAR点投影到2D图像平面中。 投影如下图所示。接下来,我将3D LiDAR点分布到相应的边界框。 最后,我根据不同帧的对应边界框中最接近的3D LiDAR点计算了TTC。 基于摄像头的TTC 我使用检测器/描述符的各种组合来找到每个图像中的关键点,并在
2023-05-18 00:00:59 132.97MB C++
1
Inverse Problem Theory and Methods for Model Parameter Estimation - A. Tarantola(牛叉)
2023-05-15 09:11:54 20.08MB 反演问题
1
头部姿势估计-OpenCV 在计算机视觉中,姿势估计特别是指对象相对于相机的相对方向。 姿势估计在计算机视觉中通常称为“透视n点”问题或PNP问题。 样片 安装 使用包管理器 。 pip install -r requirements.txt cd models bash downloader.sh cd .. 用法 从图像获取姿势 python head_pose_from_image.py -h 从网络摄像头获取姿势 python head_pose_from_webcam.py -h #### For source 0 and focal length 1 python head_pose_from_webcam.py -f 1 -s 0 3D模型可视化 python Visualize3DModel.py
2023-05-11 18:55:37 7.38MB opencv computer-vision headpose-estimation Python
1