内容概要:本文详细介绍了一个基于MATLAB实现的KPCA-RF混合模型项目,用于股票价格预测。项目通过核主成分分析(KPCA)对高维、非线性金融数据进行降维与特征提取,再结合随机森林(RF)回归模型进行价格预测,有效提升了模型的泛化能力与预测精度。整个项目涵盖数据采集、预处理、时序特征构建、KPCA降维、RF建模、结果评估与可视化等完整流程,并强调自动化、可复用性和模型可解释性。文中还列举了项目面临的挑战,如高维非线性数据处理、噪声干扰、时序建模等,并给出了相应的技术解决方案。 适合人群:具备一定金融知识和MATLAB编程基础的数据科学从业者、金融工程研究人员及高校研究生。 使用场景及目标:①应用于股票价格趋势预测与量化交易策略开发;②为金融领域中的高维非线性数据建模提供系统性解决方案;③支持模型可解释性需求下的智能投顾与风险管理系统构建。 阅读建议:建议读者结合MATLAB代码实践操作,重点关注KPCA参数选择、RF调优方法及特征重要性分析部分,深入理解模型在金融时序数据中的应用逻辑与优化路径。
2025-11-19 15:23:59 27KB KPCA 随机森林 股票价格预测 MATLAB
1
程序名称:基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型 实现平台:matlab 代码简介:提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。提出一种经验模态分解 (EMD)、核主成分分析(KPCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的4种环 境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳 性;其次利用KPCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络 对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。附带参考文献。本代码在原文献上进行了改进,采用KPCA代替PCA,进一步提升了预测精度。代码具有一定创新性,且模块化编写,可自由根据需要更改完善模型,如将EMD替换成VMD CEEMD CEEMDAN EEMD等分解算法,对LSTM进一步改善,替换为GRU,BILSTM等。代码注释详细,无
2025-11-04 15:52:19 1.07MB lstm matlab
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)和长短期记忆网络(LSTM)的多维时间序列预测MATLAB代码实现。具体应用案例为北半球光伏功率预测,涉及的数据集包含太阳辐射度、气温、气压和大气湿度四个输入特征,以及光伏功率作为输出预测。文档详细介绍了从数据加载与预处理到EMD和KPCA处理,再到LSTM模型训练与预测的具体步骤,并进行了EMD-LSTM、EMD-KPCA-LSTM和纯LSTM模型的对比分析。此外,还强调了代码的注释清晰度和调试便利性,确保用户能够顺利运行和理解整个流程。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对时间序列预测、机器学习和光伏功率预测感兴趣的群体。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的效果,选择最优模型;③ 掌握MATLAB环境下复杂模型的构建和调优方法。 其他说明:代码已验证可行,支持本地EXCEL数据读取,附带详细的“说明”文件帮助用户快速上手。建议用户在实践中结合实际需求调整参数和模型配置,以获得最佳预测效果。
2025-11-01 16:52:20 749KB
1
高效特征波长筛选与数据聚类算法集合:CARS、SPA、GA等结合PCA、KPCA与SOM技术,光谱代分析与预测建模专业服务,特征波长筛选与数据聚类算法集萃:从CARS到SOM的通用流程与光谱分析服务,特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替数据就可以用,程序内有注释,直接替光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分析,光谱定量预测分析建模和分类预测建模 ,CARS; SPA; GA; MCUVE; 光谱数据降维算法; 数据聚类算法; 程序内注释; 光谱代分析; 定量预测分析建模; 分类预测建模,光谱数据处理与分析工具:算法集成与模型构建服务
2025-10-30 12:12:06 1.49MB sass
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)与长短期记忆网络(LSTM)的组合模型,用于北半球光伏功率的多维时间序列预测。文档详细介绍了从数据加载与预处理到模型训练与预测的具体步骤,并对比了LSTM、EMD-LSTM和EMD-KPCA-LSTM三种模型的效果。代码支持读取本地EXCEL数据,适用于多种时间序列预测任务,如电力负荷、风速、光伏功率等。文中还强调了代码的注释清晰,便于理解和调试。 适用人群:具备MATLAB编程基础的研究人员和技术人员,特别是从事时间序列预测、能源数据分析领域的专业人士。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的预测效果,选择最优模型;③ 处理和分析光伏功率等时间序列数据。 其他说明:代码已验证,确保原始程序运行正常。建议在运行前仔细阅读程序包中的‘说明’文件,了解数据准备、模型参数设置及运行环境要求。
2025-10-28 11:11:56 713KB
1
内容概要:本文介绍了基于MATLAB的核主元分析法(KPCA)在TE(Tennessee Eastman)过程故障监测中的应用。KPCA通过将输入空间中复杂的非线性问题转化为特征空间中的线性问题,实现了对高维、非线性数据的有效处理。文章详细阐述了KPCA故障监测的具体步骤,包括选择监控变量、特征分解、确定主元个数以及计算T2和SPE统计量控制限。此外,还提供了一个简化的MATLAB代码片段,展示了如何使用KPCA进行故障监测。 适合人群:从事工业自动化、故障诊断领域的研究人员和技术人员,尤其是熟悉MATLAB编程的工程师。 使用场景及目标:适用于需要对复杂工业过程进行实时故障监测的场景,旨在提高生产效率和产品质量,减少因设备故障带来的损失。 其他说明:文中提供的方法和代码可以作为研究和开发的基础,用户可以根据具体的需求进行调整和优化。
2025-06-29 18:29:42 276KB
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
此提交包含以下文件: 1)dataset.mat 2) KPCAsurface.m 3) PCAsurface.m 4)greenmag.m dataset.mat 包含取自模拟过程示例的二维数据集。 该数据用于训练和测试内核 PCA 以进行故障检测。 训练后,为输出数据空间中的每个位置计算广泛使用的用于故障检测的 T2 和 Q 统计指标,从而生成等高线图。 然后将 99% 显着性水平检测限叠加在地图上,作为数据空间的正常(绿色)和错误(品红色)区域之间的边界。 使用等高线图,人们可以将各种内核类型和参数选择对正常和故障过程状态之间的决策边界的影响可视化。 这项工作是对参考文献 [1] 中结果的补充。 进一步的工作可以通过调查内核行为对进程监控性能的影响来进行。 [1] KES Pilario、Y. Cao 和 M. Shafiee。 非线性动态过程中早期故障监测的混合核规范变量
2022-11-22 15:46:56 16KB matlab
1
核主成分分析法,使用python实现。应对非线性数据,先使用核技巧映射高维使之线性可分,之后再用PCA方法将高维降到低维,理论上可从无穷维降到一维或二维,将数据变为线性可分。此程序中既包含了手工制作的KPCA全过程,也有直接从sklearn调用包直接实现。里面有详细的代码注释,核分块注释,可以截取自己需要的部分。直接套用的话,使用最前面一段代码替换数据即可
1