高效特征波长筛选与数据聚类算法集合:CARS、SPA、GA等结合PCA、KPCA与SOM技术,光谱代分析与预测建模专业服务,特征波长筛选与数据聚类算法集萃:从CARS到SOM的通用流程与光谱分析服务,特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替数据就可以用,程序内有注释,直接替光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分析,光谱定量预测分析建模和分类预测建模 ,CARS; SPA; GA; MCUVE; 光谱数据降维算法; 数据聚类算法; 程序内注释; 光谱代分析; 定量预测分析建模; 分类预测建模,光谱数据处理与分析工具:算法集成与模型构建服务
2025-10-30 12:12:06 1.49MB sass
1
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)与长短期记忆网络(LSTM)的组合模型,用于北半球光伏功率的多维时间序列预测。文档详细介绍了从数据加载与预处理到模型训练与预测的具体步骤,并对比了LSTM、EMD-LSTM和EMD-KPCA-LSTM三种模型的效果。代码支持读取本地EXCEL数据,适用于多种时间序列预测任务,如电力负荷、风速、光伏功率等。文中还强调了代码的注释清晰,便于理解和调试。 适用人群:具备MATLAB编程基础的研究人员和技术人员,特别是从事时间序列预测、能源数据分析领域的专业人士。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的预测效果,选择最优模型;③ 处理和分析光伏功率等时间序列数据。 其他说明:代码已验证,确保原始程序运行正常。建议在运行前仔细阅读程序包中的‘说明’文件,了解数据准备、模型参数设置及运行环境要求。
2025-10-28 11:11:56 713KB
1
内容概要:本文介绍了基于MATLAB的核主元分析法(KPCA)在TE(Tennessee Eastman)过程故障监测中的应用。KPCA通过将输入空间中复杂的非线性问题转化为特征空间中的线性问题,实现了对高维、非线性数据的有效处理。文章详细阐述了KPCA故障监测的具体步骤,包括选择监控变量、特征分解、确定主元个数以及计算T2和SPE统计量控制限。此外,还提供了一个简化的MATLAB代码片段,展示了如何使用KPCA进行故障监测。 适合人群:从事工业自动化、故障诊断领域的研究人员和技术人员,尤其是熟悉MATLAB编程的工程师。 使用场景及目标:适用于需要对复杂工业过程进行实时故障监测的场景,旨在提高生产效率和产品质量,减少因设备故障带来的损失。 其他说明:文中提供的方法和代码可以作为研究和开发的基础,用户可以根据具体的需求进行调整和优化。
2025-06-29 18:29:42 276KB
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
此提交包含以下文件: 1)dataset.mat 2) KPCAsurface.m 3) PCAsurface.m 4)greenmag.m dataset.mat 包含取自模拟过程示例的二维数据集。 该数据用于训练和测试内核 PCA 以进行故障检测。 训练后,为输出数据空间中的每个位置计算广泛使用的用于故障检测的 T2 和 Q 统计指标,从而生成等高线图。 然后将 99% 显着性水平检测限叠加在地图上,作为数据空间的正常(绿色)和错误(品红色)区域之间的边界。 使用等高线图,人们可以将各种内核类型和参数选择对正常和故障过程状态之间的决策边界的影响可视化。 这项工作是对参考文献 [1] 中结果的补充。 进一步的工作可以通过调查内核行为对进程监控性能的影响来进行。 [1] KES Pilario、Y. Cao 和 M. Shafiee。 非线性动态过程中早期故障监测的混合核规范变量
2022-11-22 15:46:56 16KB matlab
1
核主成分分析法,使用python实现。应对非线性数据,先使用核技巧映射高维使之线性可分,之后再用PCA方法将高维降到低维,理论上可从无穷维降到一维或二维,将数据变为线性可分。此程序中既包含了手工制作的KPCA全过程,也有直接从sklearn调用包直接实现。里面有详细的代码注释,核分块注释,可以截取自己需要的部分。直接套用的话,使用最前面一段代码替换数据即可
1
PCA和KPCA算法用于TE过程的故障检测
2022-10-21 17:18:10 2KB pca故障检测
1
KPCA代码及其实例详解,关于非线性降维的新手入门教学
2022-10-21 16:24:46 48KB KPCA降维 KPCA降维 matlab
1
这项工作提出了一种提取电流波形特征以识别家用电器的方法。 短时傅立叶变换(STFT)和内核PCA技术用于提取这些特征。 一旦定义了特征,分类器 k-最近邻 (kNN)、支持向量机 (SVM)、线性判别分析 (LDA)、随机森林 (RF) 和极限学习机 (ELM) 被用于设备(​​或组合)电器)标识。 PS:ELM算法摘自http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm并适应本工作
2022-08-31 10:47:59 6.61MB matlab
1
改进核主成分分析,有数据,有算例,流形学习结合核主成分分析,自己编写,仅供参考
2022-08-12 19:16:57 3.3MB klpp kpca kpca改进 核主成分