半桥LLC谐振变换器:plecs仿真研究,涵盖开环与闭环系统,波形分析与仿真结果展示,半桥LLC谐振变换器:开环与闭环的Plecs仿真研究,波形分析与应用实践,半桥LLC谐振变器的plecs仿真,开环闭环均有,图中放了一些波形及部分plecs仿真。 ,半桥LLC谐振变换器; plecs仿真; 开环仿真; 闭环仿真; 波形分析,半桥LLC谐振变换器仿真分析:开环闭环波形对比 半桥LLC谐振变换器是一种电力电子设备,用于高效地转换和控制电气能量。在Plecs仿真环境下进行的研究不仅对开环和闭环系统进行了全面的仿真分析,还深入探讨了波形分析以及仿真结果的展示。该研究涉及了从基本的开环操作到闭环控制的全过程,展示了波形在不同工作模式下的特性变化,并通过对比分析,对不同控制策略下的性能进行了评估。 半桥LLC谐振变换器的优点在于它能够在宽范围的负载条件下保持高效率和高功率密度。在实际应用中,这种变换器通常用于电源供应器、电动汽车充电器、以及可再生能源系统中,例如太阳能和风能逆变器。通过Plecs仿真软件,工程师可以构建精确的模型,模拟电路在不同工作条件下的性能,从而优化设计并预测实际电路的行为。 在本研究中,开环和闭环控制策略的仿真结果提供了对变换器性能的深刻见解。开环控制通常更简单,成本较低,但是它无法提供对输出电压或电流的精确调节,尤其是在负载变化较大时。闭环控制则利用反馈信号来调节输出,确保输出电压或电流维持在设定值。闭环系统更复杂,成本较高,但能够提供更好的性能,特别是在需要精确控制的场合。 波形分析是电力电子领域的一个重要方面,因为波形的形状、频率和幅度直接关系到电子设备的性能和寿命。在本研究中,通过对不同控制策略下波形的详细分析,可以揭示谐振变换器的工作特性,以及在不同控制条件下的效率和稳定性。 此外,仿真结果的展示不仅包括了波形的对比,还可能包含了其他重要的性能指标,如效率曲线、频率响应和温度分布等。这些结果对于设计工程师来说至关重要,因为它们可以帮助识别潜在的问题,并为实际硬件的构建提供可靠的设计依据。 文章中提及的文件名,如“文章标题半桥谐振变换器的仿真分析开环.doc”等,表明了研究内容的全面性,不仅覆盖了开环系统,还包括了闭环系统的分析。而文件扩展名“doc”、“html”和“jpg”表明研究结果可能以文档、网页和图像的形式展示,以适应不同的阅读和分析需求。 半桥LLC谐振变换器的研究涉及了多个层面,包括但不限于电路设计、控制策略的制定、性能仿真、以及最终的应用实践。Plecs仿真软件在这一过程中扮演了至关重要的角色,它不仅加速了设计和分析的流程,还提高了开发效率,使得在制造实际硬件之前能够对电路进行深入的测试和优化。
2026-01-10 01:15:53 440KB css3
1
内容概要:本文深入探讨了半桥/全桥LLC谐振变换器的四种主要控制方式:频率控制PFM、PWM控制、移相控制PSM和混合控制PFM+PSM。详细介绍了每种控制方式的工作原理、特点及应用场景,并提供了具体的MATLAB/Simulink和PLECS仿真代码示例。此外,文中还分享了许多实用的经验技巧,如频率控制中的开关损耗管理、PWM控制中的死区时间补偿、移相控制中的相位差优化以及混合控制中的模式切换策略等。 适用人群:从事电力电子设计的研究人员和技术工程师,尤其是对LLC谐振变换器感兴趣的专业人士。 使用场景及目标:帮助读者理解并掌握LLC谐振变换器的不同控制方法,以便在实际项目中选择最适合的技术方案,提升系统性能和可靠性。 其他说明:文章不仅涵盖了理论知识,还包括大量实战经验和代码片段,有助于读者快速上手并在实践中不断优化设计方案。
2026-01-09 10:21:54 1.29MB
1
内容概要:本文详细介绍了由Basso大师设计的LLC谐振控制器,涵盖了从理论到实际应用的各个方面。首先,利用Mathcad进行详细的数学建模,将复杂的谐振腔参数设计简化为基本运算步骤,如特征阻抗和K因子的计算。其次,借助Simplis仿真软件,对控制器进行了全面的模拟测试,特别是针对轻载条件下的突发模式控制以及极端情况下的性能表现。此外,还探讨了如何通过矩阵运算评估寄生参数的影响,并展示了在不同恶劣工况下系统的稳定性和鲁棒性。 适合人群:从事电源设计的专业工程师和技术爱好者,尤其是那些希望深入了解LLC谐振控制器内部机制的人士。 使用场景及目标:适用于需要优化电源转换效率、提高系统可靠性的项目中。通过对文中提供的具体实例的学习,可以掌握如何在实际工作中运用先进的计算工具和仿真手段来改进产品设计。 其他说明:这份资料不仅提供了详尽的技术指导,更重要的是传达了一种设计理念——即允许一定程度的设计容差以增强系统的适应能力。这对于追求高效能和高可靠性电源解决方案的研发团队来说是非常宝贵的启示。
2025-12-28 13:40:36 2.68MB
1
内容概要:本文介绍了基于V2G技术的新能源汽车车载双向OBC(On-Board Charger),PFC(功率因数校正),LLC(谐振变换器)以及V2G(Vehicle to Grid)双向充电桩的MATLAB仿真模型。该模型包括前级电路的双向AC/DC单相PWM整流器和后级电路的双向DC/DC CLLC谐振变换器,实现了3.5kW的仿真功率。正向变换时,单相交流电网向电动汽车输出DC360V电能;反向变换时,电动汽车向电网回馈能量。通过这种方式,不仅提高了电动汽车的能源利用率,还使电网更加智能和环保。 适合人群:从事新能源汽车技术研发的专业人士、高校相关专业的师生、对新能源汽车充电技术感兴趣的科研人员。 使用场景及目标:适用于研究和开发新能源汽车双向充电技术,特别是OBC、PFC、LLC和V2G技术的应用。目标是提升电动汽车的能源利用效率,促进智能电网的发展。 其他说明:文中提供了部分MATLAB代码示例,帮助读者理解和构建仿真模型。实际应用中涉及更复杂的电路设计和控制算法。
2025-12-26 22:52:58 1.18MB
1
内容概要:本文详细探讨了基于V2G(车到电网)技术的电动汽车双向OBC(车载充电机)的MATLAB仿真模型构建。系统分为前级双向AC/DC单相PWM整流器和后级双向DC/DC CLLC谐振变换器。前级电路实现单位功率因数的AC/DC转换,后级电路通过PFM控制实现高效双向DC/DC转换。文中还介绍了功率设置、仿真波形分析以及充放电模式切换的控制逻辑。通过该仿真模型,能够深入了解新能源汽车车载充电机的工作原理,为实际硬件设计提供理论支持。 适合人群:从事新能源汽车技术研发的工程师和技术爱好者,尤其是对电力电子和MATLAB仿真感兴趣的读者。 使用场景及目标:适用于希望掌握电动汽车双向OBC设计原理的研究人员和工程师。目标是通过仿真模型理解双向OBC的工作机制,优化参数配置,提高系统效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和参数设置技巧,有助于读者快速上手并进行进一步的实验和改进。
2025-12-26 22:48:37 1.17MB
1
实例讲解半桥LLC效率低下原因及解决.pdfpdf,实例讲解半桥LLC效率低下原因及解决.pdf
2025-12-01 17:34:28 1.06MB 开关电源
1
【LLC谐振变换器效率低下原因分析及解决方法】 LLC谐振变换器因其开关损耗小、适用于高频高功率应用而备受青睐。然而,在实际设计中,许多工程师可能会遇到功率输出不足的问题。本文以半桥谐振LLC变换器为例,深入探讨效率低下原因并提出解决方案。 我们来看看半桥LLC的基本参数。在这个实例中,PFC铁硅铝磁环AS130的电感量为330uH,PFC二极管选用MUR460,PFC MOSFET为7N60,PFC输出电压为395V。负载为24V,6A,146W。LLC级的谐振网络参数包括谐振电感Ls为175uH,谐振电容Cs为15nF,励磁电感Lm为850uH,M值(励磁电感与谐振电感之比)为5,Q值为0.5,工作频率Fr为100kHz。变压器的匝比为8.5,开关使用7N60二极管。在满载150W,开关频率82kHz的情况下,虽然波形看起来正常,但效率仅达到88%。 **思考1**:低励磁电感可能导致MOSFET关断损耗增加。初始设计中,励磁电感Lm为550uH,通过调整到850uH,虽然空载时励磁电流峰值有所下降,但效率提升有限,因为降低励磁电感不利于ZVS条件的实现。 **思考2**:次级二极管在谐振网络电流等于励磁电感电流后停止传导,可能影响ZCS,尤其是在满载时,二极管振荡可能恶化效率。需要测量满载时的二极管电流波形以确认。 **思考3**:二极管钳位和双谐振电容的过载保护方案可能影响效率。这需要进一步评估其对整体性能的影响。 **建议1**:提高工作频率,确保开关频率略高于谐振频率,以补偿死区时间的影响。 **建议2**:避免在重载时使用过低的开关频率,防止副边漏感和原边节电容谐振,影响效率。 **建议3**:单独测试PFC和DCDC部分,以确定效率低下的源头。增大励磁电感虽可减少励磁电流,但可能不利于ZVS,增加死区时间反而可能降低效率。 **建议4**:对于PFC效率低的问题,可考虑采用CRM或DCM模式。如果空间允许,可使用铁氧体提升效率。 经过上述建议的实施,再次测试得到满载30分钟的效率提升至89.6%。这表明参数的微调对于效率改善至关重要。具体参数调整包括电感量增大、初级匝数减少、次级电流密度提升以及考虑最小输入电压计算峰值增益等。同时,根据Q值选择合适的谐振元件值,并通过控制初级和次级间的物理距离来调整漏感,确保系统性能的优化。 总结来说,提高LLC谐振变换器效率涉及多个方面,包括正确计算谐振频率、优化谐振网络参数、合理选择开关器件以及考虑系统的保护策略。通过对这些因素的精细调整,可以显著提升变换器的工作效率。
2025-12-01 17:33:21 308KB 谐振变换器
1
内容概要:本文详细介绍了基于TMS320F28034PNT的数字控制LLC谐振开关电源开发板CSS02404。开发板采用半桥LLC拓扑和中心抽头整流结构,具备多种保护功能如过压、过流保护等。文中展示了PID控制的实现方法及其在电源控制中的应用,讨论了多零点补偿器和双环嵌套结构的作用。此外,还提供了丰富的调试技巧,如利用GPIO模拟DAC输出调试波形,以及硬件设计中的关键细节,如MOSFET驱动电路的优化。提供的原理图和源码有助于深入理解数字控制的具体实现。 适合人群:从事电力电子、数字电源设计的研发人员和技术爱好者。 使用场景及目标:适用于希望深入了解LLC谐振开关电源数字控制原理的研究者和工程师。通过实际操作和调试,掌握PID控制、多零点补偿器的应用,提升数字电源设计能力。 其他说明:开发板不仅提供硬件支持,还包括详细的源码和调试工具,便于用户快速上手并进行深入研究。
2025-12-01 12:09:21 1.98MB
1
2000W~12V大功率电脑电源的设计和技术特点,重点阐述了PFC(功率因数校正)、LLC(谐振式半桥)谐振转换和同步整流技术的应用。文中不仅解释了这些技术的工作原理及其优势,还提供了完整的PCB电路图参数、变压器参数和BOM清单,确保用户可以准确制作和组装电源。此外,还分享了批量出货的稳定方案,确保生产的每台产品都符合设计要求。最后,本文强调了该设计方案对于学习和DIY产品设计的价值。 适合人群:从事电源设计的专业人士、电子工程学生、DIY爱好者。 使用场景及目标:① 学习大功率电脑电源的设计原理和技术细节;② DIY制作大功率电脑电源;③ 批量生产和制造大功率电脑电源。 其他说明:提供的资料仅用于学习和参考,实际应用时需根据具体情况进行调整和改进。
2025-11-25 11:11:29 527KB
1