控制顶刊IEEE TAC热点lunwen复现,前V章案例复现,内容包括数据驱动状态反馈控制和LQR控制,可应用于具有噪声的数据和非线性系统,附参考lunwen及详细代码注释对应到文中公式,易于掌握理解,需要代码 ,IEEE TAC热点论文; 复现案例; 数据驱动状态反馈控制; LQR控制; 噪声数据; 非线性系统; 参考论文; 代码注释; 公式对应; 代码需求,IEEE TAC热点论文复现:数据驱动反馈控制与LQR控制在噪声非线性系统中的应用 在现代控制理论中,数据驱动的状态反馈控制和线性二次调节器(LQR)控制技术是两个重要的研究方向。这些技术尤其在处理具有噪声的数据和非线性系统时显得尤为重要。本文将详细介绍如何复现IEEE Transactions on Automatic Control(TAC)中关于这些技术的热点论文,旨在通过案例分析和代码实现,帮助读者深入理解相关理论并掌握其应用方法。 数据驱动的状态反馈控制是一种无需事先知道系统精确模型即可实现状态估计和反馈控制的方法。这种方法依赖于从系统运行中收集的数据来建立模型,对于许多实际应用中的复杂系统来说,这是一种非常实用的技术。在复现案例中,我们将展示如何利用真实数据来训练模型,并实现有效的状态反馈控制。 LQR控制是一种广泛应用于线性系统的最优控制策略,它通过解决一个线性二次规划问题来设计控制器。LQR控制器能够保证系统的稳定性和性能,特别是在面对具有噪声干扰的系统时,LQR控制仍然能够提供较好的控制效果。复现案例中将包含如何将LQR理论应用于控制系统设计,并通过实际案例展示其效果。 本文复现的案例内容不仅包括理论分析,还提供了详细的代码实现。代码中包含了丰富的注释,这些注释直接对应文中出现的公式,使得读者可以轻松地跟随每一个步骤,理解代码是如何将理论转化为实际控制的。这对于那些希望加深对数据驱动状态反馈控制和LQR控制技术理解的读者来说,是一个极好的学习资源。 另外,文章还附有相关的参考文献,以便于读者在深入学习的过程中,可以进一步查阅相关的专业资料,从而更好地掌握这些控制技术的深层次原理和应用背景。这些参考文献不仅涵盖了控制理论的经典内容,还包括了一些前沿的学术论文,帮助读者站在巨人的肩膀上更进一步。 本文为读者提供了一个全面的视角来理解数据驱动状态反馈控制和LQR控制技术,并通过实际案例和详细的代码注释,使理论与实践相结合。读者通过本文的学习,将能够更有效地将这些控制技术应用于具有噪声的数据和非线性系统,从而在控制领域取得更加深入的研究成果。
2025-12-01 19:44:18 1.9MB
1
IEEE TAC期刊中关于数据驱动状态反馈控制和LQR控制的研究成果及其应用。文章首先解释了如何利用带有噪声的实际数据进行状态反馈控制,通过构建Hanke l矩阵来处理噪声并求解状态反馈增益。接着探讨了数据驱动的LQR控制方法,展示了如何从轨迹数据中估计系统参数,并通过正则化提高控制器的鲁棒性。文中提供了详细的代码实现和注释,帮助读者理解和复现实验。 适合人群:对现代控制理论感兴趣的研究人员和技术人员,特别是那些希望深入了解数据驱动控制方法的人群。 使用场景及目标:① 学习如何处理噪声数据并实现状态反馈控制;② 掌握数据驱动的LQR控制方法及其在非线性系统中的应用;③ 使用提供的代码和仿真工具进行实验和验证。 其他说明:完整代码已在GitHub上开源,便于读者对照论文进行调试和扩展。
2025-12-01 09:03:24 1.14MB
1
标题中的“LQR横向轨迹跟踪控制”涉及到的是车辆动力学领域的一个重要技术,即线性二次调节器(Linear Quadratic Regulator, LQR)应用于车辆的横向轨迹跟踪控制。LQR是一种反馈控制策略,用于最小化一个动态系统的性能指标,如能量消耗或系统误差平方和。在这个场景中,LQR被用来优化车辆的转向控制,使其能够精确地沿着预设的轨迹行驶。 “Simulink和CarSim联合仿真”是指使用两种不同的仿真工具进行协同工作。Simulink是MATLAB的一个扩展,提供了一个图形化的建模环境,用于模拟和分析多域动态系统。而CarSim是一款专业的车辆动力学仿真软件,能够模拟各种复杂的车辆行为。通过联合仿真,可以结合Simulink的模型构建灵活性和CarSim的车辆物理模型的精确性,实现更真实的车辆控制系统的测试和优化。 描述中提到的“双移线状况”是指车辆在行驶过程中需要连续改变行驶方向的工况,例如避障或在赛道上的连续弯道。这种情况下,车辆的横向稳定性及轨迹跟踪能力显得尤为重要。从描述中我们可以推断,LQR控制策略在这种挑战性的环境中表现良好,能够有效跟踪预设轨迹。 标签“程序”暗示了这个压缩包可能包含了实现LQR控制算法的代码或者Simulink模型。可能的文件“横向轨迹跟踪控制.html”可能是对整个控制系统的介绍或报告,而“1.jpg”、“2.jpg”、“3.jpg”很可能是仿真过程中的截图,展示LQR控制的效果。“横向轨迹跟.txt”可能是一个文本文件,里面可能记录了仿真参数、设置细节或者控制算法的说明。 综合这些信息,我们可以理解这个项目是关于使用LQR控制理论,通过Simulink和CarSim联合仿真来实现车辆在双移线情况下的横向轨迹跟踪。通过这样的仿真研究,可以深入理解LQR如何处理复杂驾驶情境,并为实际车辆控制系统的设计和优化提供参考。
2025-11-20 18:55:56 172KB
1
基于LQR算法的自动驾驶车道保持辅助(LKA)系统的设计与实现方法。首先解释了LKA的基本概念及其重要性,接着深入探讨了使用经典二自由度自行车模型来描述车辆动态特性,并展示了如何利用Matlab定义状态空间方程。随后,文章讲解了LQR控制器的设计步骤,包括选择合适的Q和R矩阵以及求解反馈增益矩阵K的方法。此外,还阐述了如何将Carsim软件用于模拟车辆动力学行为,而Simulink则用来运行控制算法,两者通过特定接口进行数据交换,实现了联合仿真平台的搭建。文中提供了具体的S-function代码片段,用于展示如何在Simulink中处理来自Carsim的数据并计算所需的前轮转角。最后分享了一些调参技巧,如调整Q矩阵中各元素的比例关系以改善系统性能,确保车辆能够稳定地沿车道行驶。 适合人群:对自动驾驶技术感兴趣的科研人员、工程师以及相关专业的学生。 使用场景及目标:适用于希望深入了解LQR算法在自动驾驶领域的应用,特别是想要掌握车道保持辅助系统设计流程的人群。通过本教程可以学会构建完整的LKA控制系统,从理论推导到实际仿真的全过程。 其他说明:文中提到的内容不仅涵盖了LQR算法的基础知识,还包括了许多实用的操作细节和技术要点,有助于读者更好地理解和应用这一先进的控制策略。同时鼓励读者尝试不同的参数设置,探索更多可能性。
2025-11-16 15:53:11 471KB
1
内容概要:本文探讨了一阶倒立摆控制技术,特别是LQR控制仿真,并详细对比了PD控制、LQR控制和MPC模型预测控制三种方法。通过MATLAB仿真实验,分析了这三种控制方法在倒立摆起摆和平衡控制中的表现,揭示了各自的优缺点。文中还简要介绍了倒立摆系统的背景和LQR控制的基本原理,提供了相关参考文献供进一步学习。 适合人群:对控制理论感兴趣的研究人员、工程师以及希望深入了解倒立摆控制技术的学生。 使用场景及目标:适用于希望通过仿真实验了解不同控制方法在倒立摆系统中性能差异的人群。目标是帮助读者掌握LQR、PD和MPC控制方法的特点,以便在实际项目中做出合适的选择。 其他说明:本文不仅提供理论分析,还包括具体的MATLAB仿真实现步骤,使读者能够动手实践并验证理论效果。
2025-10-09 01:19:03 1.03MB MATLAB 倒立摆系统
1
内容概要:本文详细探讨了一阶倒立摆控制技术,特别是通过MATLAB仿真实验对LQR控制、PD控制和MPC模型预测控制这三种方法进行了对比研究。文中介绍了倒立摆系统的背景和基本原理,重点阐述了每种控制方法的工作机制及其优缺点。实验结果显示,LQR控制在处理一阶倒立摆系统的起摆和平衡控制方面表现出色,具有良好的稳定性和较小的超调量。此外,文章还提供了相关参考文献,帮助读者进一步深入了解这一领域的研究。 适合人群:对自动控制理论感兴趣的研究人员和技术爱好者,尤其是希望了解倒立摆控制技术和MATLAB仿真的读者。 使用场景及目标:适用于希望掌握不同控制方法在倒立摆系统中应用效果的人群,旨在通过对比分析找到最适合特定应用场景的控制策略。 其他说明:文章不仅限于理论介绍,还包括具体的MATLAB仿真实验步骤,使读者能够动手实践并验证各种控制方法的实际表现。
2025-10-09 01:17:57 987KB MATLAB 倒立摆系统
1
PID与LQR四旋翼无人机仿真学习:Simulink与Matlab应用及资料详解,完整的PID和LQR四旋翼无人机simulink,matlab仿真,两个slx文件一个m文件,有一篇资料与其对应学习。 ,核心关键词:完整的PID; LQR四旋翼无人机; simulink仿真; matlab仿真; slx文件; m文件; 资料学习; 对应学习。,PID与LQR四旋翼无人机Simulink Matlab仿真研究学习资料整理 在当今科技飞速发展的背景下,无人机技术已广泛应用于各个领域,如侦察、测绘、物流等。而四旋翼无人机由于其特殊的结构和优异的飞行性能,成为无人机研究中的一个热点。其中,无人机的飞行控制问题更是研究的重点,而PID(比例-积分-微分)控制和LQR(线性二次调节器)控制算法是实现四旋翼无人机稳定飞行的核心技术。 Simulink与Matlab作为强大的仿真工具,广泛应用于工程问题的建模与仿真中。将PID与LQR控制算法应用于四旋翼无人机的仿真中,不仅可以验证控制算法的可行性,还可以在仿真环境下对无人机的飞行性能进行优化和测试。本学习材料主要通过两个Simulink的仿真模型文件(.slx)和一个Matlab的控制脚本文件(.m),全面展示了如何利用这两种控制算法来实现四旋翼无人机的稳定飞行控制。 在四旋翼无人机的PID控制中,通过调整比例、积分、微分三个参数,使得无人机对飞行姿态的响应更加迅速和准确。PID控制器能够根据期望值与实际值之间的偏差来进行调整,从而达到控制的目的。而在LQR控制中,通过建立无人机的数学模型,将其转化为一个线性二次型调节问题,再通过优化方法来求解最优控制律,实现对无人机更为精确的控制。 本学习材料提供了详细的理论知识介绍,结合具体的仿真文件和控制脚本,帮助学习者理解四旋翼无人机的飞行原理以及PID和LQR控制算法的设计与实现。通过仿真操作和结果分析,学习者可以更直观地理解控制算法的工作流程和效果,进一步加深对控制理论的认识。 在实际应用中,四旋翼无人机的控制问题十分复杂。它需要考虑到机体的动态特性、外部环境的干扰以及飞行过程中的各种不稳定因素。因此,对控制算法的仿真验证尤为重要。通过Simulink与Matlab的联合使用,可以模拟各种复杂的飞行情况,对控制算法进行全面的测试和评估。这种仿真学习方法不仅成本低,而且效率高,是一种非常有效的学习和研究手段。 此外,本学习材料还包含了对四旋翼无人机技术的深入分析,如其结构特点、动力学模型以及飞行动力学等方面的内容。这为学习者提供了一个全面的四旋翼无人机知识体系,有助于他们更好地掌握无人机控制技术。 通过阅读本学习材料并操作相关仿真文件,学习者可以系统地学习和掌握PID与LQR两种控制算法在四旋翼无人机上的应用,进一步提升其在无人机领域的技术水平和实践能力。这不仅对于无人机的科研人员和工程师来说具有重要意义,对于无人机爱好者和学生来说也是一份宝贵的资料。
2025-06-14 09:26:47 416KB edge
1
"基于LQR算法的自动驾驶控制:动力学跟踪误差模型的C++纯代码实现与路径跟踪仿真",自动驾驶控制-基于动力学跟踪误差模型LQR算法C++纯代码实现,百度apollo横向控制所用模型。 代码注释完整,可以自己看明白,也可以付费提供代码和算法原理讲解服务。 通过C++程序实现的路径跟踪仿真,可视化绘图需要安装matplotlibcpp库,已经提前安装好包含在头文件,同时需要安装Eigen库,文件内也含有安装教程。 可以自定义路径进行跟踪,只需有路径的X Y坐标即可,替下图中框框标出来的地方路径就可以了。 图片是双移线和一些自定义的路线仿真效果。 ,自动驾驶控制; LQR算法; C++纯代码实现; 动力学跟踪误差模型; 横向控制; 路径跟踪仿真; matplotlibcpp库; Eigen库; 自定义路径跟踪; 图片仿真效果,C++实现LQR算法的自动驾驶路径跟踪控制代码
2025-05-23 18:31:47 1.11MB
1
LQR和微分博弈1】讲解了最优控制的数学理论,主要涵盖了庞特里亚金极小值原理(PMP)和哈密顿-雅可比-贝尔曼方程(HJB方程),以及微分博弈的基础知识,并通过一个零和追逃博弈的实例进行了阐述。 最优控制问题在工程、经济和物理等多个领域都有广泛应用。其基本框架是,给定一个受控系统的动态方程,以及一个性能指标函数,目标是找到一个控制策略使得该性能指标达到最优。在这个过程中,状态方程描述了系统随时间变化的规律,而性能指标通常包括终态条件和过程成本。 庞特里亚金极小值原理是解决这类问题的一种方法。它指出,对于最优控制问题,存在一组辅助变量——协态(或称为李雅普诺夫向量),通过满足极值条件和规范方程来确定最优控制。极值条件表明,对于任意可行的控制,H函数(哈密顿量)的值在最优控制下是最小的。规范方程则给出了状态和协态的演化规则,同时边界条件处理了目标集的问题。 HJB方程是动态规划理论在连续时间控制问题中的体现,它源于贝尔曼的最优性原理。值函数定义为从某一初始状态和时间出发,采用最优控制策略到达目标时的性能指标。HJB方程描述了值函数随时间和状态变化的关系,且在最优控制下,值函数应满足该方程。当值函数存在二阶连续偏导数时,HJB方程提供了求解最优控制问题的微分必要条件。 微分博弈是多agent系统中决策优化的一个分支,涉及到两个或多个参与者相互作用的动态过程。每个参与者都试图最大化自己的效用,而这个效用可能与对方的策略直接相关。在零和追逃博弈的实例中,两个参与者(追者和逃者)通过调整各自的控制策略,试图达到各自的目标,例如追者试图抓住逃者,而逃者则要避免被捕。 总结来说,LQR(线性二次调节器)是一种特定的最优控制问题,而微分博弈则是考虑多方交互的最优控制理论。这些理论不仅在理论上有重要意义,也在实际应用中有着广泛的价值,如自动驾驶、航空航天控制、电力系统调度等。通过理解和应用PMP、HJB方程以及微分博弈理论,我们可以设计出更加智能和高效的控制系统。
2025-05-12 18:57:23 1009KB
1
四轮转向系统LQR控制与路径跟踪仿真的研究,基于四轮转向与LQR控制的路径跟踪仿真研究,四轮转向&LQR控制路径跟踪仿真 Simulink和Carsim联合仿真,横向控制为前馈+反馈lqr,纵向为位置-速度双PID控制 以前轮转角,后轮转角为控制量,误差为状态量,使用LQR求解出最优值,减小误差。 下图为Simulink模型截图,跟踪效果,前后轮转角,前轮转向&四轮转向对比误差等 提供模型文件,包含 ,四轮转向; LQR控制; 路径跟踪仿真; 联合仿真; 前馈+反馈LQR控制; 前后轮转角控制; 状态量误差; 模型文件,四轮转向LQR控制路径跟踪仿真模型
2025-04-28 00:02:33 1.04MB kind
1