内容概要:本文介绍了一种基于YOLOv8改进的高精度红外小目标检测算法,主要创新点在于引入了SPD-Conv、Wasserstein Distance Loss和DynamicConv三种关键技术。SPD-Conv通过空间到深度变换保留更多小目标特征,Wasserstein Distance Loss提高了对小目标位置和尺寸差异的敏感度,DynamicConv则实现了卷积核的动态调整,增强了对不同特征模式的适应性。实验结果显示,改进后的算法在红外小目标检测任务中取得了显著提升,mAP从0.755提高到0.901,同时在其他小目标检测任务中也有良好表现。 适合人群:从事计算机视觉、目标检测研究的技术人员,尤其是对红外小目标检测感兴趣的开发者。 使用场景及目标:适用于需要高精度检测红外小目标的应用场景,如工业质检、无人机监控、卫星图像分析等。目标是提高小目标检测的准确性和召回率,降低误检率。 其他说明:文中提供了详细的代码实现和技术细节,帮助读者理解和复现实验结果。建议在实践中根据具体应用场景调整模型配置和参数设置。
2025-05-05 20:41:18 954KB
1
标题和描述所涉及的知识点是如何在神经网络的训练过程中可视化损失(loss)和准确率(accuracy)的变化曲线。在神经网络训练中,损失函数用来衡量模型预测值与实际值之间的差异,而准确率则是模型在分类任务中预测正确的比例。通过可视化这两个指标的变化趋势,可以直观地观察到模型训练的效果和状态,对于调参和诊断模型性能有着重要的作用。 具体到给定文件中的内容,这部分代码是使用Python编程语言中的matplotlib库来绘制loss、acc和学习率(learning rate,lr)的变化曲线。matplotlib是一个广泛使用的绘图库,能够生成出版质量级别的图表,并且可以方便地进行各种图形的定制。 现在详细阐述这段代码的知识点: 1. 定义了一个名为plt_loss_acc的函数,该函数接受三个参数:train_loss, test_acc, 和lr。其中train_loss是训练过程中的损失值列表,test_acc是测试数据上准确率的列表,lr是学习率的列表。 2. 在函数内部,使用plt.figure(figsize=(12,8))设置了图形的大小。这行代码会创建一个新的图形对象,并且设置其宽度和高度为12*8英寸。 3. 使用plt.subplot(1,3,1)开始创建一个1行3列的子图布局的第一个子图,用于绘制损失曲线。plt.plot(train_loss, label='train loss', linestyle='-', color='r')绘制了损失值,其中用红色实线表示,并且设置了图例标签。plt.title('loss curve')设置了子图的标题为'loss curve'。 4. 继续使用plt.subplot(1,3,2)创建第二个子图,用于绘制准确率曲线。这里使用了绿色实线表示准确率,并设置了对应的标签和标题。 5. 使用plt.subplot(1,3,3)创建第三个子图,用于绘制学习率变化曲线。学习率是指在优化算法中决定模型参数更新的步长大小,这里是用蓝色实线表示,并设置了图例和标题。 6. plt.legend()函数调用为每个子图添加了图例,图例说明了曲线所代表的含义。 7. plt.savefig('./run_results/loss_accuracy_lr.png', dpi=300)这行代码将当前图形保存为图片文件。保存路径是'./run_results/loss_accuracy_lr.png',并且指定了300 dots per inch(每英寸点数)作为图像的分辨率。 8. plt.clf()调用清除了当前的图形对象,这是为了避免与后续可能产生的图形相互干扰。 在了解了上述知识点后,我们可以明白,这段代码的主要功能是将神经网络训练过程中的三个关键指标——损失、准确率和学习率的变化趋势以图形化的方式展现出来。通过观察这些曲线,我们可以判断模型是否正在学习、是否过拟合或欠拟合以及是否需要调整学习率等。这些是深度学习调优中非常重要的诊断工具,有助于提高模型的性能和预测精度。
2025-04-15 09:05:07 603B 神经网络
1
标题中的“基于VFNet&Varifocal-Loss改进YOLOv5的番茄成熟度检测系统”揭示了这个项目的核心:它是一种使用深度学习技术来识别和评估番茄成熟度的系统。YOLOv5是一个非常流行的实时目标检测模型,而VFNet(Variational Feature Network)和Varifocal Loss则是为了提升其在特定任务上的性能而引入的优化方法。在这个系统中,VFNet可能用于提取更具有区分性的特征,而Varifocal Loss则可能是为了解决传统二分类损失函数在处理不平衡数据时的不足。 YOLOv5是You Only Look Once(YOLO)系列的最新版本,以其快速的检测速度和较高的准确性而受到赞誉。YOLO模型的工作原理是将图像分割成多个网格,并预测每个网格中是否存在目标,以及目标的类别和边界框。YOLOv5相较于早期版本进行了多方面的优化,包括使用更先进的网络架构和训练技巧,使其在保持高效的同时提高了精度。 VFNet是一种针对目标检测任务的特征学习框架,旨在增强模型对目标特征的理解和表示能力。通过引入变分方法,VFNet可以学习到更具多样性和鲁棒性的特征,从而在复杂的视觉任务中提高检测性能。在番茄成熟度检测这样的任务中,能够准确地捕获番茄的颜色、形状等关键特征至关重要。 Varifocal Loss是一种专门为解决目标检测中的多类别不平衡问题而设计的损失函数。在传统的二分类问题中,如前景/背景,容易出现类别不平衡,使得模型过于关注占多数的类。而在目标检测中,这种情况更为复杂,因为除了前景和背景,还有多个不同的目标类别。Varifocal Loss通过引入渐进式权重分配,更好地处理了这一问题,使得模型能够更加均衡地关注各类别的预测。 这个压缩包内的"readme.txt"文件很可能包含了项目的详细说明,包括如何构建和运行这个系统,以及可能的数据集和训练过程的描述。"VFNet-Varifocal-Loss-Enhanced-YOLOv5-Tomato-Ripeness-Detection-System-main"目录可能包含了源代码、预训练模型、配置文件和其他相关资源。 这个系统利用了深度学习的强大功能,特别是YOLOv5的高效目标检测能力,结合VFNet的特征增强和Varifocal Loss的类别平衡优化,实现了对番茄成熟度的准确判断。这对于农业自动化、产品质量控制等领域具有很高的应用价值。
2024-10-24 10:12:21 4.16MB yolov5 python
1
纳米固体与表面力学,孙长庆,L. K. Pan,An analytical solution shows that a competition between bond order loss and the associated bond strength gain of the lower coordinated atoms near the edge of a surface dictates the
2024-03-02 11:25:25 250KB 首发论文
1
如果你对DFace感兴趣并且想参与到这个项目中, 以下TODO是一些需要实现的功能,我定期会更新,它会实时展示一些需要开发的清单。提交你的fork request,我会用issues来跟踪和反馈所有的问题。也可以加DFace的官方Q群 681403076 也可以加本人微信 jinkuaikuai005 TODO(需要开发的功能) 基于center loss 或者triplet loss原理开发人脸对比功能,模型采用ResNet inception v2. 该功能能够比较两张人脸图片的相似性。具体可以参考 Paper和FaceNet 反欺诈功能,根据光线,质地等人脸特性来防止照片攻击,视频攻击,回放攻击等。具体可参考LBP算法和SVM训练模型。 3D人脸反欺诈。 mobile移植,根据ONNX标准把pytorch训练好的模型迁移到caffe2,一些numpy算法改用c++实现。 Tensor RT移植,高并发。 Docker支持,gpu版 安装 DFace主要有两大模块,人脸检测和人脸识别。我会提供所有模型训练和运行的详细步骤。你首先需要构建一个pytorch和cv2的python环境
2023-04-06 20:21:31 3.71MB MTCNN Center-Loss 多人实时人脸检测
1
人脸识别喀拉拉邦 该存储库的过程包括face detection , affine transformation , extract face features , find a threshold to spilt faces 。 然后在数据集上评估结果。 要求: dlib(19.10.0) keras(2.1.6) tensorflow(1.7.0) opencv-python的(3.4.0.12) 待办事项清单 InceptionV3后端 MobileNet后端 VGG16后端 ResNet50后端 Xception后端 DenseNet后端 人脸检测和仿射变换 我将Dlib和opencv用于此预处理过程 。 Dlib进行快速人脸检测,而opencv进行裁剪和仿射变换。 深度学习功能提取 我使用几种基本的深度学习模型从预处理的图像中提取128个特征。 损失就是tr
2023-03-25 17:29:43 67KB face-recognition facenet triplet-loss Python
1
今天小编就为大家分享一篇使用Tensorboard工具查看Loss损失率,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2023-03-21 11:25:12 50KB Tensorboard Loss 损失率
1
火炬损失 我实现的标签平滑,amsoftmax,焦点损耗,双焦点损耗,三重态损耗,giou损耗,亲和力损耗,pc_softmax_cross_entropy,ohem损耗(基于行硬挖掘损失的softmax),大利润- softmax(bmvc2019),lovasz-softmax-loss和dice-loss(广义的软骰子损失和批处理软骰子损失)。 也许这对我的未来工作很有用。 还尝试实现swish,hard-swish(hswish)和mish激活功能。 此外,添加了基于cuda的一键式功能(支持标签平滑)。 新添加一个“指数移动平均线(EMA)”运算符。 添加卷积运算,例如coord-conv2d和dynamic-conv2d(dy-conv2d)。 一些运算符是使用pytorch cuda扩展实现的,因此您需要先对其进行编译: $ python setup.py
2023-03-21 11:04:16 93KB cuda pytorch ema triplet-loss
1
CycleGAN本质上是两个镜像对称的GAN,构成了一个环形网络。两个GAN共享两个生成器,并各自带一个判别器,即共有两个判别器和两个生成器。一个单向GAN两个loss,两个即共四个loss
2023-03-18 18:34:20 11.84MB loss www.764.comgan www.764gan.com cyclegan
读Focal Loss for Dense Object Detection这篇论文 做的一个总结讲解ppt
2023-01-10 08:10:50 2.15MB focal loss 类不平衡 ppt
1