本框架基于 Python + Pytest + excel + log + yaml 实现接口自动化测试框架 1. 基于Pytest二次开发:深度封装Pytest框架,提供更友好的测试组织方式 2. 模块化设计:接口请求/断言/日志/数据处理等模块独立封装 3. 数据驱动:通过Excel管理测试数据,支持批量用例维护 4. 日志追踪:详细的接口调用日志便于问题定位 5. 报告可视化:HTML格式报告+历史数据对比,支持测试趋势分析 6. 认证管理:通过YAML集中管理Token信息,避免重复认证请求 7. 多环境适配:支持配置化管理测试环境参数(域名/用户凭证等)
2025-09-23 20:50:23 186KB pytest 自动化测试
1
数字信号处理技术已广泛应用于通信、雷达、图形图像处理等领域。随着现代科技的发展,尤其是半导体工艺的进入深亚微米时代,新的功能强劲的高性能数字信号处理器(DSP)也相继推出,要实现对运算量和实时性要求越来越高的DSP 算法,如对基于分数阶傅立叶变换的Chirp信号检测与估计,合成孔径雷达(SAR)成像,高频地波雷达中的自适应滤波和自适应波束形成等算法,单片 DSP 仍然显得力不从心。软硬件结合构建宽带互联并行处理的数据处理系统是实现高速实时数据处理的有效方案。基于这样的方案设计理念,采用多DSP、多FPGA通过SRIO互联来实现一个高速互联的计算网络,数据可以在DSP之间及DSP与FPGA之间高 【DSP中的基于TMS320C6455的高速SRIO接口设计与实现】这篇文章探讨了在数字信号处理(DSP)领域如何利用TI公司的TMS320C6455处理器及其内置的高速串行接口SRIO(Serial RapidIO)来构建高速互联的计算网络。TMS320C6455是一款高性能定点DSP,具有强大的运算能力和集成的SRIO接口,能够有效地解决大数据量和实时性需求的问题。 随着科技的进步,特别是半导体工艺的提升,对于复杂的DSP算法如分数阶傅立叶变换下的Chirp信号检测、合成孔径雷达(SAR)成像、高频地波雷达中的自适应滤波和波束形成等,单片DSP难以胜任。因此,采用多DSP和FPGA(现场可编程门阵列)通过SRIO进行高速互联成为解决此类问题的有效策略。这种方式允许数据在多个DSP之间以及DSP与FPGA之间高效传输,提高系统的并行处理能力和实时性,同时具备良好的可扩展性和适应性。 TMS320C6455基于C64x+ DSP内核,其最大主频可达1.2GHz,16位定点运算能力高达9600MMAC/s。与传统的DSP相比,C6455集成了更多的外围接口,特别是SRIO,它可以提供高达25 Gbits/s的峰值速率,极大地缓解了高速数据传输的挑战。SRIO作为一种开放的互连标准,支持多种速率和应用,如多处理器系统、存储子系统和通用计算平台,具有广泛的应用前景。 在C6455之间的SRIO通信设计中,每个处理器有4个全双工port,可独立运行或组合为4x模式,支持不同波特率。为确保信号质量,接口设计需遵循特定的布线约束,如50欧的差分阻抗、差分线等长和接收端的耦合电容。SRIO的通信基于请求-响应机制,通过包(packet)进行数据传输,每个包包含了必要的控制信息和数据,确保了数据传输的可靠性和效率。 文章深入研究了C6455 DSP间以及与FPGA间的SRIO通信的软硬件设计,包括接口互连、包格式、传输机制等方面,这些研究成果对SRIO接口及C6455的开发提供了重要的参考。通过这样的设计,可以实现更高效、灵活的数据处理系统,满足现代信号处理领域对高速实时处理的需求。
2025-09-23 14:34:07 353KB DSP
1
基于Vivado平台的AD9653四通道Verilog源代码工程。该工程实现了125M采样率,支持SPI配置以及LVDS接口自动调整最佳延时功能。文中首先简述了工程背景及其重要性,接着深入探讨了Verilog源代码的具体实现细节,包括SPI配置部分和LVDS接口自动延时调整部分。最后,文章总结了该工程的实际应用效果,并强调了代码中有详细的注释,便于工程师理解和维护。 适合人群:具备FPGA开发经验的硬件工程师、嵌入式系统开发者以及对高速数据采集感兴趣的科研人员。 使用场景及目标:适用于需要高精度、高采样率数据采集的应用场景,如通信设备、医疗仪器、工业自动化等领域。目标是帮助工程师快速掌握并应用于实际项目中。 其他说明:该工程已经在实际项目中得到了验证,证明其可靠性和稳定性。同时,提供了丰富的注释,有助于进一步的学习和改进。
2025-09-22 15:42:10 551KB
1
《周立功ControlCAN二次开发库以及接口函数使用手册》是专为开发者设计的一份详尽参考资料,旨在帮助用户深入理解和高效使用ControlCAN这一专业CAN(Controller Area Network)通信库。该开发库提供了丰富的功能,使得在不同平台上进行CAN通信变得简单易行。 一、ControlCAN简介 ControlCAN是周立功公司推出的一款高性能、易用的CAN通信库,适用于各种嵌入式系统和PC应用。它支持Windows和嵌入式操作系统,包括实时操作系统,如WinCE、Linux等,为开发人员提供了一套完整的API(Application Programming Interface),方便进行CAN消息的发送、接收以及滤波等功能。 二、接口函数详解 ControlCAN二次开发库的核心在于其提供的接口函数。这些函数包括但不限于: 1. `CanOpen()`: 初始化CAN接口,设置波特率、滤波器等参数,是使用CAN库的首要步骤。 2. `CanSend()`: 发送CAN消息,用户需提供ID、数据长度及数据内容。 3. `CanReceive()`: 接收CAN消息,返回接收到的消息ID、数据长度和数据内容。 4. `CanClose()`: 关闭CAN接口,释放资源。 5. `CanSetFilter()`: 设置CAN滤波器,用于筛选接收的消息。 三、动态库的使用 动态库(.dll文件)是Windows平台下的一种共享库,允许多个程序共享同一段代码,以节省内存和提高效率。在使用ControlCAN时,需要正确链接到对应的动态库,确保运行时能找到所需的功能模块。 四、文档与测试软件 "必读:函数库使用说明.txt"是指导开发者如何正确使用函数库的重要文档,包含函数的详细说明、使用示例和注意事项。此外,配合的CAN测试软件能帮助开发者实时监控CAN总线上的通信,调试程序,验证接口函数的正确性。 五、版本更新 "zlgcan二次开发库(2023.07.28)"表明了库文件的最新更新日期,开发者应确保使用的是最新版本,以便获取最新的功能和修复的bug。 周立功ControlCAN二次开发库是一个强大的工具,结合详细的使用手册和配套软件,能够帮助开发者快速集成CAN通信功能,提高项目的开发效率和质量。通过学习和实践,开发者可以灵活地利用ControlCAN库,实现复杂的CAN通信需求。
2025-09-21 00:33:04 7.13MB
1
小滴课堂推出的滴云自动化测试平台是一款面向企业级用户的一站式自动化测试解决方案。它综合了多种测试类型,包括接口自动化测试、UI自动化测试、压力测试、性能测试、兼容性测试、安全测试以及持续集成测试等,旨在为用户提供全面的测试服务。 接口自动化测试是该平台的核心功能之一,它允许用户对软件应用的API接口进行自动化测试,以确保接口的功能性、稳定性和安全性。UI自动化测试则关注用户界面的自动化测试,通过对用户界面元素的操作来验证应用程序的可用性和交互性。 压力测试是通过模拟高负载情况来测试应用程序在极限状态下的表现,其目的是发现系统在高压力下的性能瓶颈和潜在问题。性能测试则更加关注软件在正常运行条件下的表现,包括响应时间、资源消耗和吞吐量等指标。 兼容性测试是确保软件产品能在不同操作系统、浏览器或设备上正常运行的关键测试。它可以帮助开发者发现并解决不同环境下的兼容性问题。安全测试则是为了评估软件的安全性,包括识别潜在的安全缺陷、漏洞以及防止数据泄露的风险。 持续集成测试是指在软件开发过程中,将各个阶段的代码进行集成,并进行自动化测试的过程。这种做法有助于早期发现和解决集成错误,提高软件开发的效率和质量。 测试报告分析是指在测试完成后,对测试数据进行汇总和分析,生成测试报告,帮助用户了解测试的整体情况,包括测试覆盖率、失败率、缺陷密度等关键指标。测试数据管理则涉及到对测试过程中产生的大量数据进行有效的组织和存储,以便于后续的查询和分析。 此外,平台还可能提供附赠资源,例如文档、教程或其他辅助材料,来帮助用户更好地理解和使用滴云自动化测试平台。说明文件则为用户提供详细的使用指南和操作说明,确保用户能够快速上手并有效利用平台的各项功能。 滴云自动化测试平台集成了多个方面的自动化测试功能,能够满足企业在不同测试阶段的需求,从而提高软件的质量和开发效率。通过持续集成测试和自动化测试,企业可以加快产品的上市速度,并确保产品在上市前的稳定性和安全性。而附赠资源和详细说明文件的提供,也体现了小滴课堂对用户体验的重视,使其成为一款值得信赖的自动化测试解决方案。
2025-09-20 15:05:41 3.85MB
1
高德地图API是开发者用于集成高德地图服务到自己应用中的关键工具,它提供了丰富的功能,包括地图展示、定位、路线规划、地理编码与反地理编码等。在2D和3D模式下,API都能提供高效且用户友好的地图体验。 一、2D地图API 2D地图API主要用来在二维平面上显示地图。通过调用相应的API,开发者可以实现地图的加载、缩放、平移、旋转等操作。此外,还可以添加自定义标注、覆盖物,以及实现热力图、矢量图层等功能。高德地图2D API支持动态加载地图资源,使得地图显示更加流畅,同时可以结合其他服务,如实时交通状况,为用户提供更全面的信息。 二、3D地图API 3D地图API则提供了立体视角的地图展示,使用户能够从不同角度查看地理事物,增强了地图的视觉效果。开发者可以利用3D地图API构建城市建筑、道路、地形等三维模型,同时也能实现3D视角下的导航和动画效果。3D地图API在城市规划、虚拟现实应用等领域有广泛应用。 三、定位API 高德地图的定位API提供了获取用户当前地理位置的功能,支持网络定位和GPS定位等多种方式。开发者可以通过调用定位API获取用户的经纬度坐标,并将其应用于各种应用场景,如基于位置的服务、个性化推荐等。高德地图的定位服务通常具有较高的精度和稳定性。 四、路线规划API 高德地图API的路线规划功能强大,支持驾车、步行、骑行等多种出行方式的路径计算。它可以考虑实时交通状况,给出最佳的行驶路线,包括最短时间、最短距离等模式。此外,还支持多点路径规划,满足用户在一次查询中规划多个途经点的需求。 五、地理编码与反地理编码API 地理编码API是将地址文本转换为经纬度坐标的过程,反地理编码则是将坐标转换回地址文本。这两个功能在地图应用中十分关键,它们帮助用户在地图上准确地找到目标位置,或者输入地址时自动完成建议。 六、其他API 高德地图API还包括搜索API,用于地图上的地点搜索;离线地图API,允许用户下载地图数据在无网络环境下使用;以及服务端SDK,提供更强大的后台处理能力,如批量地理编码、大规模路径规划等。 总结,高德地图API接口jay涵盖了地图展示、定位、路线规划等核心功能,无论是2D还是3D模式,都能为开发者提供全面的地图服务支持。通过熟练掌握并合理运用这些API,开发者可以构建出丰富多样的地图应用,满足用户在导航、信息查询、数据分析等方面的需求。
2025-09-19 13:18:34 3.66MB 接口
1
标题中的“基于STM32F103、LCD1602、MCP3302(spi接口)ADC转换器应用proteus仿真设计”表明这是一个关于微控制器STM32F103的项目,它结合了LCD1602显示屏和MCP3302 ADC转换器,所有这些组件通过Proteus仿真工具进行模拟测试。在这个项目中,我们将深入探讨STM32F103微控制器、LCD1602显示模块、MCP3302 SPI接口ADC的工作原理以及如何在Proteus环境中进行仿真。 STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,具有高性能、低功耗的特点。它提供丰富的外设接口,包括SPI、I2C、UART等,适用于各种嵌入式应用。在这个项目中,STM32F103将作为主控制器,管理数据采集和屏幕显示。 LCD1602是一种常见的字符型液晶显示器,能够显示两行、每行16个字符。它通过I2C或4线串行接口与微控制器通信。在STM32F103的应用中,我们需要配置相应的GPIO引脚,编写驱动程序来控制LCD1602的背光、显示字符和清除屏幕等功能。 MCP3302是一款12位、单通道、SPI接口的模数转换器(ADC),用于将模拟信号转换为数字值。SPI(Serial Peripheral Interface)是一种同步串行通信协议,由主设备(在这里是STM32F103)控制,提供数据传输。MCP3302的使用需要设置STM32的SPI时钟、配置片选信号(CS)、发送命令和读取转换结果。 在Proteus仿真环境中,我们可以构建硬件电路模型,连接STM32、LCD1602和MCP3302,然后运行微控制器的固件(如STM32F103C8.hex)进行仿真。FREERTOS & LCD1602 & MCP3302(SPI) application.pdsprj文件可能是一个包含FreeRTOS实时操作系统、LCD1602和MCP3302 SPI接口配置的工程文件。FreeRTOS是一个轻量级的实时操作系统,提供任务调度、同步和互斥等机制,有助于管理多任务并提高系统的响应性。 “Middlewares”文件夹可能包含了用于STM32与LCD1602、MCP3302通信的中间件库,比如SPI通信库和LCD驱动库。这些库函数简化了底层硬件操作,使得开发人员可以更专注于应用程序逻辑。 这个项目涵盖了嵌入式系统开发的核心技术,包括微控制器编程、外围设备驱动、实时操作系统以及硬件仿真实践。通过这样的设计,开发者可以学习如何在STM32平台上实现数据采集、处理和可视化,并了解如何在Proteus中验证和调试系统功能。
2025-09-19 12:22:16 250KB stm32 proteus
1
在当前信息技术飞速发展的背景下,接口测试作为软件测试的一个重要分支,确保了不同软件组件之间交互的正确性和可靠性。B接口工具,作为一个专门设计用于测试B接口的软件程序,承载了对B接口性能、稳定性和兼容性的检验任务。 B接口工具的设计初衷在于提供一个标准化、系统化的测试环境,从而能够模拟和评估在实际应用中B接口的表现。通过该工具,开发者和技术人员能够进行数据交互验证、功能验证、性能评估以及异常处理能力的测试。它通常包括一系列预定义的测试用例,以及用于生成测试报告的模块,这些报告详细记录了接口的测试结果和可能存在的问题。 对于一个接口测试工具来说,其核心功能一般包括但不限于以下几个方面: 1. 接口请求的发送与接收能力,包括对各种协议(如HTTP/HTTPS、TCP/IP等)的支持; 2. 请求参数的配置,允许用户定义所需的输入参数,如GET、POST、PUT、DELETE等; 3. 数据验证功能,确保响应数据与预期结果一致; 4. 异常和边界情况的测试,检测接口在非正常情况下的处理能力; 5. 性能测试,例如并发连接测试、吞吐量测试等,以确定接口在高负载下的表现; 6. 安全性测试,评估接口在面对恶意攻击时的安全防护能力; 7. 自动化测试脚本支持,提高测试效率,减少重复工作。 鉴于B接口工具是专为B接口测试设计,我们可以推测B接口具有其特定的技术要求和业务应用场景。例如,B接口可能涉及电子商务、金融服务、移动通信或其他行业领域的数据交换标准。B接口工具将根据这些特定领域的标准和协议进行相应的适配和优化。 此外,B接口工具可能还具备以下特性: - 用户友好的操作界面,便于不同技术背景的用户快速上手; - 高度灵活的测试配置,以适应不同层次的测试需求; - 强大的脚本编写和调试功能,支持复杂的测试场景模拟; - 日志记录和分析模块,帮助用户追踪测试过程中的问题; - 集成开发环境(IDE)或版本控制系统的兼容性,以便更好地融入现代软件开发流程。 B接口工具的出现极大地提高了B接口测试的效率和质量,它不仅能够为开发团队提供可靠的测试反馈,还能够帮助他们更快地定位问题并优化接口性能。因此,该工具对于确保软件产品质量和满足行业标准具有不可或缺的作用。
2025-09-18 23:14:36 114.49MB
1
YT8521S硬件电路设计参考图中包括WX1860AL4芯片部分原理图、YT8521功能配置和电压配置。复位信号由板卡上的CLPD控制,也可以设计一个RC电路控制,复位信号上拉建议选择3.3V电压。SERDES接口应连接至光笼子,与SGMII不同,注意不要混淆,如果是SGMII需要修改YT8521S功能配置。硬件电路经过实际生产测试,可放心使用。 裕太微电子的YT8521S是一款适用于RGMII(Reduced Gigabit Media Independent Interface)转SERDES(Serializer/Deserializer)接口的PHY(物理层)芯片,其硬件电路设计参考图中包含了与WX1860AL4芯片的连接以及详细的功能和电压配置说明。本设计参考图是基于YT8521S硬件电路设计的,该设计已经过生产测试,可提供给工程师可靠的参考。 复位信号的控制是电路设计中的重要一环。在参考图中,复位信号的控制既可以由板卡上的CLPD(Complex Programmable Logic Device)来控制,也可以通过设计RC电路(电阻-电容电路)来实现。需要注意的是,复位信号上拉时,建议选用3.3V的电压,以确保稳定性。 在硬件设计中,SERDES接口应当连接至光笼子,这与SGMII(Serial Gigabit Media Independent Interface)接口不同。因此,在设计时务必区分清楚两种接口,否则可能需要修改YT8521S的功能配置,以确保正确的数据传输速率和通信协议。 电路设计参考图上还标注了YT8521S芯片的功能配置和电压配置。功能配置主要关注芯片的操作模式、电源管理、信号传输速率等关键参数,而电压配置则涵盖了芯片运行所需的各个电压等级,这对于确保芯片稳定工作至关重要。例如,在参考图中可能会列出VCC_3V3,表明某些芯片引脚需要3.3V的供电。 参考图上还包含了一些电路设计中常用的元件标识和参数,如电容、电阻等。例如,图中可能会标明具体的电容容量,如4.7uF、100nF等,并指出这些元件的容差和额定电压,以帮助设计者选择合适的电子元件。 在实际的硬件电路设计中,通常还会涉及到电源管理电路设计,确保整个系统在不同工作状态下的电源供应问题。此外,电路板的设计还需要考虑信号完整性和电磁兼容性,以减少信号干扰和电磁辐射。 参考图还可能包括了布局和布线的一些要求和建议,这在高速电路设计中尤为重要。由于RGMII和SERDES接口都是高速通信接口,所以布线的精确度和信号传输的路径会直接影响到数据传输的稳定性。在设计时应当考虑到信号的传输延迟、回流路径等因素,以优化电路板性能。 YT8521S硬件电路设计参考图提供了从芯片连接、功能电压配置到元件选型等多方面的详细信息。这不仅为电路设计工程师提供了参考,而且能够帮助他们快速理解和应用相关的硬件设计技术,从而提升设计效率,减少设计错误,保证最终产品性能的稳定性。
2025-09-17 19:25:22 182KB PHY芯片 RGMII 网络接口 硬件设计
1
TDK-Lambda GEN系列程控电源是一系列可编程直流电源产品,适用于多种电气测试与应用。这些电源具有不同的型号与规格,能够提供从1.5kW到15kW不等的功率输出。电源的型号包括GH1.5kW、G1.7kW、G2.7kW、G3.4kW、G5kW、GSP10kW和GSP15kW,它们代表不同的功率等级和电流输出范围。例如,GH1.5kW型号的电源能够提供高达600V的电压和150A的电流。 这些程控电源具备了多种接口,包括内置的LAN、USB、RS-232和RS-485接口,这些接口使用户可以通过网络或计算机接口控制电源。此外,GEN系列还提供选配的接口选项,包括IEEE488.2(GPIB)、MODBUS TCP和EtherCAT。其中,MODBUS TCP和EtherCAT分别使用了Modbus®和ETHERCAT®的专有协议,这两个商标分别由Modbus Organization, Inc. 和德国Beckhoff Automation GmbH所拥有。 使用手册详细介绍了如何使用SCPI(可编程仪器的标准命令)和GEN指令协议来控制GEN系列程控电源。手册还特别指出了对于配备MODBUS TCP接口选项的电源,应当参照专门的MODBUS TCP使用手册IA761-04-04,而对于配备EtherCAT接口选项的电源,则应参照EtherCAT使用手册IA761-04-05。 本手册适用的机型众多,从1.5kW至15kW功率范围的系列型号都有涉及。在机型命名中,“GH”或“GB”前缀表示电源型号,后续数字和字母代表了功率和电流的具体规格。例如,“GH10-150”代表功率为1.5kW,电流为150A的型号。用户需要根据具体型号来确保其适用的指令集和控制方式。 GEN系列程控电源支持的电压和电流范围广泛,从0-600V电压和0-150A电流起步,直至能够提供高达1500A的电流输出。如此大的电流输出能力使得这些电源非常适合在工业环境中使用,例如驱动电动机、进行大型电气系统的测试等。 TDK-Lambda GEN系列程控电源通过其内置接口及可选配接口,提供给用户多种控制选项,从而能够满足不同场合下的复杂控制需求。设备的详细型号划分和对应的电压电流输出范围,为不同功率需求的用户提供精确匹配的电源解决方案。
2025-09-17 08:59:53 15.52MB 可编程直流电源 RS232/RS485 USB接口 Modbus
1