毕业设计做的东西,希望对大家有帮助,包括滤波,二值化等等
2025-05-03 19:26:34 803B 图像预处理
1
Curvelet Matlab工具箱2.0_CurveLab-2.1.3 CurveLab is a toolbox implementing the Fast Discrete Curvelet Transform, both in Matlab and C++. The latest version is 2.1.3.
2025-05-03 19:01:24 892KB Curvelet Matlab 图像处理 图像增强
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
在图像处理领域,亚像素(Subpixel)定位技术是一种提高边缘检测精度的重要手段。本话题主要探讨了如何利用Zernike moments(泽尼克矩)在MATLAB环境下实现亚像素级别的边缘检测,这对于精确测量和分析图像中的微小细节至关重要。 Zernike moments是一种在圆形或对称形状图像上定义的多项式矩,它具有良好的旋转不变性和形状描述能力。在边缘检测中,Zernike moments可以提供更精确的边缘位置,因为它们可以捕获到边缘轮廓的细微变化。MATLAB作为一种强大的数值计算和可视化工具,为实现这一过程提供了便利的环境。 我们需要加载`zernike7.m`这个MATLAB脚本,该脚本包含了Zernike moments的计算和应用到亚像素边缘检测的具体算法。通常,边缘检测算法如Canny、Sobel等只能提供像素级别的精度,而通过Zernike moments,我们可以进一步细化边缘位置,达到亚像素级别。 在提供的`4.bmp`、`5.bmp`、`6.bmp`、`1.bmp`和`12.bmp`这些图像文件中,我们可以看到不同零件的图像,这些图像可能是用于测试和验证Zernike边缘检测算法效果的样本。每个图像的边缘检测结果可以通过运行MATLAB脚本来获得,这将揭示Zernike方法如何提升边缘定位的准确性。 Zernike边缘检测步骤大致如下: 1. 预处理:对输入图像进行灰度化和噪声去除,通常使用高斯滤波器。 2. 计算Zernike moments:对预处理后的图像,应用Zernike moments公式,生成一系列描述图像形状特征的矩。 3. 边缘检测:通过对Zernike moments的梯度或者零交叉点分析,找到边缘的位置。 4. 亚像素定位:利用Zernike moments的连续性,通过插值或其他优化方法来确定边缘的确切亚像素位置。 通过这种方法,不仅可以提高边缘检测的精确度,还能保持图像的原始形状信息,这对于精密测量和分析微小零件的尺寸至关重要。在实际应用中,例如在半导体制造、生物医学成像等领域,亚像素级别的边缘检测可以显著提升分析结果的可靠性。 Zernike moments结合MATLAB在亚像素边缘检测中的应用,为图像处理带来了一种有效且精确的工具。通过深入理解Zernike矩的数学原理以及MATLAB脚本的实现方式,我们可以更好地优化图像分析过程,从而在科研和工业领域取得更精确的测量结果。
2025-04-24 10:08:02 598KB subpixel zernike
1
MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强代码 代码些许复杂,由本人一个朋友编写 是机器视觉和图像增强领域的应用,有gui界面,可以载入原图和参照强化的图像,读取参照图像的RGB或者HSV 分量,并强化原图像, 运行,corrction.m.结果如下图 ,MATLAB图像增强; GUI界面; 载入原图; 参照强化图像; RGB/HSV分量; 图像强化; 运行corrction.m; 结果展示。,MATLAB图像增强程序:机器视觉与GUI界面的优化应用
2025-04-21 12:22:44 5.5MB
1
基于MATLAB的水果分级系统设计是一个综合性的工程任务,旨在通过自动化手段提高水果分级的效率和准确性。该系统不仅依赖于先进的图像处理技术和数据分析算法,还通过直观易用的图形用户界面(GUI)与用户进行交互,使得非专业人员也能轻松操作。以下是对该系统设计的详细扩展描述: 系统概述 本系统利用MATLAB这一强大的数学与工程计算软件平台,结合其丰富的图像处理工具箱(Image Processing Toolbox)和图形用户界面设计工具(GUIDE或App Designer),构建了一个全面的水果分级系统。该系统能够自动分析水果图像,基于多项关键指标(如面积、直径、缺陷情况等)对水果进行精准分级,以满足不同市场或加工流程的需求。 GUI界面设计 主界面:设计简洁明了的主界面,包含启动按钮、图像加载区、分级结果显示区和操作说明。用户可以通过点击“加载图像”按钮上传待分级的水果图片,系统随即显示原图及分级后的处理结果。 参数设置区域:提供用户自定义分级标准的选项,如设置面积阈值、直径范围以及缺陷识别敏感度等。用户可以根据具体需求调整这些参数,以达到最佳的分级效果。
2025-04-14 18:33:13 724KB matlab 图像处理 毕业设计
1
在IT领域,MATLAB是一种广泛使用的编程环境,尤其在数值计算和工程应用中表现出色。在图像处理方面,MATLAB提供了强大的工具箱,使得复杂的图像处理任务变得简单易行。本资源“matlab数字图像处理,带GUI界面,亲测可用”就是这样一个实例,它包含了一系列图像处理功能,并通过图形用户界面(GUI)提供了友好的交互体验。 1. **灰度处理**:在图像处理中,灰度处理是将彩色图像转化为单一色调的图像,通常用于简化处理步骤和减少数据量。MATLAB的`rgb2gray`函数可以方便地实现这一转换。在GUI中,用户可能可以通过选择相应的菜单或按钮,将上传的彩色图像转换为灰度图像。 2. **灰度图像增强**:增强图像对比度,改善图像的视觉效果是图像处理的重要环节。MATLAB提供了如直方图均衡化、伽马校正等方法,可以增强图像的细节,使图像看起来更清晰。在GUI中,这些功能可能会以参数调整的形式呈现,让用户自行决定增强程度。 3. **缩放旋转**:图像的缩放和旋转是常见的几何变换操作。MATLAB的`imresize`函数可用于图像大小的变化,而`imrotate`函数则能实现图像的旋转。GUI界面通常会提供滑块或输入框,允许用户指定缩放比例和旋转角度。 4. **图像滤波**:滤波是去除噪声和改善图像质量的关键步骤。MATLAB提供了多种滤波器,如平均滤波器、高斯滤波器、中值滤波器等,适用于不同的图像处理需求。GUI中可能设有预设的滤波模式,用户只需点击即可应用。 5. **边缘提取**:边缘是图像的重要特征,边缘提取用于识别图像中的边界。MATLAB的Canny、Sobel、Prewitt等算法可以帮助检测边缘。GUI可能提供边缘检测的选项,用户可以选择不同的算法并调整阈值来优化结果。 6. **目标提取**:目标提取是识别和分离图像中特定对象的过程,常用方法有阈值分割、区域生长、轮廓追踪等。MATLAB的`imbinarize`函数可用于二值化处理,然后通过连通组件分析等手段提取目标。GUI中,用户可能需要指定阈值或其他参数来完成目标选取。 在提供的文件列表中,`tuxiangGUI.fig`和`tuxiangGUI.m`是MATLAB GUI界面的定义文件,`.fig`文件存储了界面布局和控件设置,`.m`文件则包含了实现上述功能的MATLAB代码。`303.png`和`7.png`可能是示例图像文件,用户可以使用这些图像测试GUI的各项功能。 这个MATLAB图像处理GUI涵盖了图像处理的基础到进阶操作,对于学习和实践MATLAB图像处理技术,以及快速实现特定图像处理任务,都是极具价值的资源。用户只需通过图形化的交互界面,即可轻松完成复杂的图像处理操作。
2025-04-13 17:13:37 1.24MB matlab 图像处理
1
MATLAB图像处理与GUI界面开发:傅立叶变换与图像滤波技术详解,MATLAB GUI界面开发及应用实践:图像处理、滤波与边缘检测的完整解决方案,MATLAB gui界面设计 MATLAB图像处理 gui界面开发 傅立叶变,灰度图,二值化,直方图均衡,高通滤波器,低通滤波器,巴特沃斯滤波器,噪声处理,边缘检测 ,MATLAB gui界面设计; MATLAB图像处理; gui界面开发; 图像处理技术; 傅立叶变换; 灰度图处理; 二值化; 直方图均衡; 滤波器(高通、低通、巴特沃斯); 噪声处理; 边缘检测,MATLAB图像处理与GUI界面开发实践:高级图像处理技术与应用
2025-04-12 01:04:18 197KB scss
1
matlab图片隐藏代码基于通用VLC映射(GVM)的JPEG比特流大容量无损数据隐藏 一种用于 JPEG 图像的高容量无损数据隐藏方案。 抽象的 JPEG 是最流行的图像格式,在我们的日常生活中被广泛使用。 因此,JPEG 图像的可逆数据隐藏 (RDH) 很重要。 大多数 JPEG 图像的 RDH 方案会在标记的 JPEG 图像中导致显着的失真和大的文件大小增量。 作为RDH的一个特例,无损数据隐藏(LDH)技术可以保持标记图像的视觉质量不下降。 在本文中,提出了一种新的高容量LDH方案。 在 JPEG 比特流中,并非所有可变长度代码 (VLC) 都用于对图像数据进行编码。 通过构建已使用和未使用 VLC 之间的映射,可以通过将已使用 VLC 替换为未使用 VLC 来嵌入秘密数据。 与之前的方案不同,我们的映射策略允许映射集中未使用和已使用的 VLC 的长度不相等。 我们提出了一些关于构建映射关系的基本见解。 实验结果表明,与以前的 RDH 方案相比,使用所提出方案的大多数 JPEG 图像获得更小的文件大小增量。 此外,所提出的方案可以获得高嵌入容量,同时保持标记的JPEG图像不失真
2025-04-11 16:55:38 319KB 系统开源
1
MATLAB数字图像处理系统是MATLAB软件中的一个模块,用于处理和分析数字图像。它提供了一系列的函数和工具,用于读取、显示、编辑、转换、增强和分析数字图像。 MATLAB数字图像处理系统可以用于多种应用,包括图像增强、图像分割、图像特征提取、图像识别、图像压缩等。它可以处理各种格式的图像,包括灰度图像和彩色图像。 MATLAB数字图像处理系统提供了丰富的图像处理函数,包括滤波、阈值处理、边缘检测、形态学操作、图像变换等。用户可以根据自己的需求选择合适的函数进行图像处理。 除了函数库,MATLAB数字图像处理系统还提供了可视化工具,如图像查看器和图像编辑器,方便用户对图像进行交互式操作和编辑。 MATLAB数字图像处理系统具有易于使用和灵活性的特点,适用于初学者和专业用户。它还与MATLAB的其他模块和工具集集成,可以方便地与其他领域的数据分析和算法开发相结合。
2024-12-30 13:30:55 156KB matlab 图像处理
1