在实际的复杂应用环境下,光伏阵列不仅存在因局部阴影情况影响导致输出功率曲线( P-U 曲 线) 呈现多极值点的问题,还具有难以考察的传感器精度、采样精度等实际应用限制所带来的量测噪 声问题。为此,在分析复杂应用环境下光伏阵列的输出特性的基础上,提出先采用递推最小二乘估 计来削弱量测噪声的影响,再运用比粒子群算法控制更简单,鲁棒性更好的人工蜂群算法跟踪全局 最大功率点的 MPPT 控制策略。最后通过仿真与实验,验证了该 MPPT 控制策略的可行性和有效性。 随着全球能源结构的转变,可再生能源得到了广泛的关注和应用。光伏能源作为一种清洁、高效、可持续的能源,其应用前景广阔。然而,由于环境影响和设备本身特性,光伏阵列在实际应用中存在着输出功率曲线多极值点的问题,这给最大功率点跟踪(MPPT)带来了挑战。 为解决这一问题,研究者提出了基于人工蜂群算法的MPPT控制策略。人工蜂群算法是一种模拟自然界蜜蜂觅食行为的优化算法,它通过模拟蜜蜂在寻找食物源时的侦查、唤起和跟随行为来完成全局搜索和局部搜索。与传统的粒子群优化算法相比,人工蜂群算法因其简单性和更好的鲁棒性而受到青睐。 在提出控制策略之前,研究者首先采用递推最小二乘估计法对量测噪声进行削弱。这是因为量测噪声会导致MPPT控制算法的性能降低,影响光伏阵列能量输出的准确性。递推最小二乘估计是一种参数估计方法,能够在线更新估计值,即使在存在噪声的情况下也能提供较为准确的估计结果。 在此基础上,研究者运用人工蜂群算法来跟踪光伏阵列的最大功率点。算法中,每个蜜蜂代表一个解,通过侦查蜂发现新的食物源(即新的功率点),观察蜂对现有食物源进行评估,根据一定的选择机制(如轮盘赌选择)选择好的食物源。通过不断地迭代,最终找到全局最优解,即最大功率点。 为了验证所提出的MPPT控制策略的可行性与有效性,研究者通过仿真和实验来进行测试。仿真在Matlab/Simulink环境下进行,Matlab/Simulink是一个集数学计算和仿真环境于一体的软件,非常适合进行算法的仿真测试。实验中,研究者使用了如“ABC.m”、“RouletteWheelSelection.m”、“CostFunction.m”等脚本文件来实现人工蜂群算法的相关操作。此外,“mptt.slx”可能是一个Simulink模型文件,用于构建光伏阵列MPPT的仿真模型。 通过对比实验结果,研究人员可以评估控制策略的性能,包括跟踪速度、准确性和稳态误差等指标。这些指标的优劣直接关系到MPPT控制策略在实际应用中的表现,是评价控制策略好坏的关键因素。 人工蜂群算法因其独特的优势,在处理具有多极值点问题的光伏阵列MPPT控制中显示出较高的实用价值。递推最小二乘估计法的加入进一步提高了控制策略对量测噪声的抵抗能力,确保了算法的稳定性。研究者通过仿真和实验验证了该策略的有效性,为光伏能源的实际应用提供了有力的技术支持。
2025-12-15 15:33:11 37KB MPPT 蜂群算法 matlab simulink
1
光伏PV三相并网逆变器MATLAB仿真 模型内容: 1.光伏+MPPT控制(boost+三相桥式逆变) 2.坐标变换+锁相环+dq功率控制+解耦控制+电流内环电压外环控制+spwm调制 3.LCL滤波 仿真结果: 1.逆变输出与三项380V电网同频同相 2.直流母线电压600V稳定 3.d轴电压稳定311V;q轴电压稳定为0V,有功功率高效输出 光伏三相并网逆变器是将光伏阵列产生的直流电转换为与电网同步的交流电的设备。在这一过程中,涉及的关键技术包括最大功率点跟踪(MPPT)控制、三相桥式逆变、坐标变换、锁相环技术以及dq功率控制等。 MPPT控制是光伏系统中的核心技术,其目的是使光伏阵列始终在最大功率点工作,以实现能量的最大化利用。在本文中,MPPT控制通过boost电路实现,该电路首先将光伏阵列输出的低压直流电升压到适当水平,再进行逆变处理。 三相桥式逆变器是实现直流电到交流电转换的关键环节,通过适当的开关策略,将直流电压转换为三相交流电压。为了确保逆变器输出的电流与电网电压的频率和相位相同,需要采用坐标变换和锁相环技术,以确保逆变器输出的稳定性。 dq功率控制是一种在同步旋转坐标系中进行的控制方法,它将交流系统中的三相变量分解为直流量(d轴)和交流量(q轴),以便于控制。dq功率控制能够有效地解耦控制系统的有功功率和无功功率,使得能量转换更为精确。 电流内环电压外环控制是一种常用的控制策略,其中电流内环负责实现快速动态响应,而电压外环则负责维持输出电压的稳定性。通过这种方式,可以确保逆变器输出的电流和电压质量,提高系统的整体性能。 spwm调制是一种脉宽调制技术,通过调整开关器件的导通时间,来控制输出电压的频率和幅值,从而实现高效率、低失真的交流电输出。 LCL滤波器是逆变器输出端的一个重要组成部分,用于滤除高频谐波,减少对电网的干扰,并保证输出电流的平滑性。 在仿真结果中,逆变器输出能够与三相380V电网同频同相,这表明逆变器的锁相功能运行正常,实现了与电网的良好同步。直流母线电压维持在600V稳定,这说明系统的电压控制环节工作得当,能够确保电压的稳定性。d轴电压稳定在311V,而q轴电压稳定在0V,这表明系统能够有效地实现有功功率的输出,无功功率输出得到抑制,实现了功率的高效转换。 光伏三相并网逆变器仿真模型的建立和分析对于优化逆变器性能、提高能量转换效率以及确保电网的稳定运行具有重要意义。通过MATLAB等仿真软件进行模型构建和分析,可以在不实际搭建物理设备的情况下,模拟实际工作环境,对各种工况下的系统表现进行评估。 值得注意的是,本文档中提到的仿真模型,还涉及到了在不同科技领域的应用,例如西门子变压器风冷控制系统的应用,这表明光伏三相并网逆变器技术在电力电子和能源转换领域的广泛应用前景。 经过以上分析,可以看出光伏三相并网逆变器在新能源技术应用中的核心地位,及其在提高能源转换效率、减少环境污染方面的重要作用。随着全球对可再生能源技术的重视程度不断提高,光伏三相并网逆变器的性能优化和控制策略的创新,将成为未来研究的重要方向。
2025-12-08 20:04:31 749KB matlab
1
内容概要:本文详细探讨了在Simulink环境下构建的光伏MPPT模型中,当光伏板处于遮荫状态时,采用扰动观察法和粒子群优化算法进行最大功率点跟踪的效果比较。文中首先介绍了两种方法的基本原理及其Matlab实现方式,然后通过具体的实验数据展示了不同光照条件下这两种算法的表现差异。特别是在多峰值情况下,粒子群算法能够更快地找到全局最优解,并且具有更低的超调量和更稳定的输出特性。最后指出,在选择具体应用场合时需要考虑实际环境特点来决定最适合的技术方案。 适合人群:从事光伏发电系统设计、优化的研究人员和技术人员,以及对智能算法应用于新能源领域感兴趣的学者。 使用场景及目标:适用于评估和选择最合适的MPPT算法用于复杂光照条件下的光伏发电系统,旨在提高系统的发电效率并降低成本。 其他说明:文章提供了详细的算法代码片段,有助于读者深入理解两种算法的工作机制。此外,还强调了根据不同应用场景选择合适算法的重要性。
2025-11-24 22:10:21 460KB
1
基于MATLAB的100kW光伏并网发电系统仿真模型:采用MPPT控制器与VSC并网控制技术探究,基于MATLAB的100kW光伏并网发电系统仿真模型:采用MPPT控制器与VSC并网控制技术探究,100kW光伏并网发电系统MATLAB仿真模型。 采用“增量电导+积分调节器”技术的MPPT控制器 。 VSC并网控制。 喜欢的可以自己研究。 ,100kW光伏并网; MATLAB仿真模型; 增量电导; 积分调节器; MPPT控制器; VSC并网控制,基于MATLAB的光伏并网系统仿真模型:增量电导与VSC并网控制下的MPPT控制器研究
2025-11-19 23:33:12 3.12MB css3
1
带有MPPT(最大功率点跟踪)和T型NPC(三电平拓扑)并网逆变系统的C代码实现及其优化方法。首先,文中提出了一种改进型MPPT算法,采用动态步长策略,使跟踪效率达到99.99%,显著提高了对光照变化的响应速度。其次,通过注入三次谐波,将母线电压利用率从86.6%提升到了93%以上。此外,针对NPC拓扑中常见的中点电压不平衡问题,提出了动态积分限幅的控制方法,有效降低了电压波动。最后,利用状态机实现了故障预检测和软恢复功能,确保系统在复杂环境下的稳定性。所有算法均在PLECS环境下进行了仿真测试,结果显示THD(总谐波失真)低于1.8%,并且在STM32G4平台上运行时CPU占用率仅为15%左右。 适合人群:从事电力电子、新能源发电领域的工程师和技术人员,尤其是对光伏逆变器有研究兴趣的人群。 使用场景及目标:适用于需要深入了解光伏逆变器内部工作原理的研究人员,以及希望优化现有系统性能的设计者。主要目标是掌握高效的MPPT算法、三次谐波注入技术和中点电压平衡控制方法,从而提高系统的整体性能。 阅读建议:由于涉及较多底层硬件和软件细节,建议读者具备一定的嵌入式编程经验和电力电子基础知识。同时,可以结合实际项目进行实验验证,以便更好地理解和应用所介绍的技术。
2025-10-25 13:28:56 4.23MB
1
内容概要:本文介绍了一种基于共直流母线架构的风力、光伏与储能联合并网发电系统仿真模型,涵盖光伏组件采用电导增量法实现MPPT控制,风机通过三相整流与MPPT策略调节功率,储能系统利用双向Buck-Boost电路进行电压电流双闭环控制以稳定800V直流母线电压,并网逆变器采用PQ控制实现恒功率并网。系统在Matlab/Simulink(2018b版)中仿真验证,并网电压电流总谐波畸变率(THD)低于5%,波形质量优异,具备高可靠性与工程参考价值。 适合人群:电气工程、新能源发电、电力电子与自动化相关专业的研究人员、研究生及从事风光储系统设计的工程师。 使用场景及目标:适用于新能源并网系统建模与仿真研究,目标为掌握MPPT控制、PQ控制、双闭环储能管理及多源协同并网技术的实现原理与参数设计方法,支撑科研项目开发或实际工程方案验证。 阅读建议:结合文中提供的Python与Matlab代码示例,深入理解各子系统控制逻辑,建议在Simulink环境中复现模型并调试关键参数以增强实践能力。
2025-10-22 19:58:26 741KB
1
Matlab Simulink仿真下的光伏并网最大功率跟踪(MPPT电导增量法实现与PI控制策略),基于电导增量法的Matlab Simulink光伏并网最大功率跟踪(MPPT)PI控制仿真与不同环境条件下的VI曲线程序研究,matlab光伏并网最大功率跟踪(MPPT)simulink仿真,PI控制,MPPT采用电导增量法 附加不同温度不同光照强度下PV,VI曲线程序,共两部分。 ,核心关键词: matlab; 光伏并网; 最大功率跟踪(MPPT); Simulink仿真; PI控制; 电导增量法; 不同温度; 不同光照强度; PV曲线; VI曲线程序。,基于PI控制与电导增量法最大功率跟踪的光伏并网Simulink仿真:多条件下的PV/VI曲线研究
2025-10-15 19:31:16 5.05MB xbox
1
内容概要:本文介绍了某大厂量产的30KW工商业储能逆变器(PCS)设计方案,采用DSP+CPLD双控制器架构,涵盖控制板与功率板原理图、DSP和CPLD源代码、核心控制算法、软件设计报告及Matlab仿真模型。系统实现了高效电能转换与稳定控制,关键技术包括PID控制、MPPT等成熟算法,并通过仿真验证了可靠性,为工商业储能系统设计提供了完整参考。 适合人群:具备电力电子、嵌入式系统基础,从事储能逆变器研发的工程师和技术人员,尤其适合1-5年经验的硬件/软件开发人员。 使用场景及目标:①用于工商业储能PCS系统的方案选型与架构设计;②基于DSP+CPLD平台进行控制逻辑开发与优化;③参考核心算法与仿真模型实现MPPT、PID等控制策略的自主开发。 阅读建议:结合提供的原理图、源码与仿真模型进行软硬件协同分析,重点关注双控制器任务划分、控制算法实现细节及系统稳定性设计,建议在仿真环境下复现并调试算法以加深理解。
2025-09-29 17:48:39 4.3MB DSP CPLD PID控制 MPPT
1
两级式光伏储能系统MPPT与双向DCDC控制仿真研究(适用于Matlab2018及以上版本),基于两级式结构的MPPT与储能控制Simulink仿真:双向DCDC变换器实现负载电压恒定与MATLAB 2018兼容,光伏储能 mppt simulink仿真 两级式结构,前级mppt,后级储能控制 采用双向dcdc 变器控制 当光照较低时放电,较高时充电,维系负载电压恒定 兼容matlab2018以上版本 ,光伏储能; MPPT; Simulink仿真; 两级式结构; 双向DCDC变换器控制; 恒压充电。,基于Simulink仿真的两级式光伏储能系统:MPPT控制与双向DCDC变换器应用
2025-09-13 18:33:43 2.16MB
1
光伏储能单相离网并网切换仿真模型的构建与实现:Boost电路MPPT控制、并网逆变及离网逆变的双控制策略、双向DCDC储能技术笔记,光伏储能单相离网并网切仿真模型 笔记+建模过程参考 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 boost电路应用mppt, 采用扰动观察法实现光能最大功率点跟踪 电流环+电压前馈的并网逆变控制策略 电压外环+电流内环的离网逆变控制策略 双向dcdc储能系统维持直流母线电压恒定 THD<5% 满足并网运行条件 2018b版本 ,核心关键词:光伏储能; 离网并网切换; 仿真模型; Boost控制; Buck-boost; 双向DCDC; 最大功率点跟踪(MPPT); 扰动观察法; 电流环; 电压前馈; 电压外环; 电流内环; THD<5%; 2018b版本。,"光伏储能系统双向DCDC控制与离网并网切换仿真模型研究"
2025-09-11 23:21:41 551KB istio
1