在本文中,我们将深入探讨如何使用OpenCV与Qt框架结合,实现一个图片中的文字OCR(Optical Character Recognition,光学字符识别)识别系统。OpenCV是一个强大的计算机视觉库,而Qt则是一个广泛使用的跨平台应用程序开发框架,两者结合可以构建出高效、用户友好的图像处理应用。 1. **OpenCV介绍**: OpenCV是一个开源的计算机视觉库,它提供了丰富的函数和模块,用于图像处理、特征检测、机器学习等。在OCR识别中,OpenCV可以用于预处理图像,例如灰度化、二值化、噪声去除等,以便提高后续文字识别的准确性。 2. **Qt介绍**: Qt提供了丰富的UI组件和事件处理机制,适合构建图形用户界面。在这里,我们可以用Qt创建一个用户友好的界面,让用户上传图片,并展示OCR识别的结果。 3. **OCR技术**: OCR技术是将图像中的文字转换为可编辑的文本格式。常见的OCR方法包括模板匹配、基于特征的识别、深度学习模型如RNN(循环神经网络)和CNN(卷积神经网络)。OpenCV虽然不直接支持复杂的OCR算法,但可以通过接口与其他OCR库(如Tesseract)集成,进行文字识别。 4. **使用OpenCV进行图像预处理**: 在识别文字前,通常需要对图像进行预处理,包括: - **灰度化**:将彩色图像转化为灰度图像,减少处理复杂度。 - **二值化**:将图像转换为黑白两色,便于后续的轮廓检测和文字分割。 - **直方图均衡化**:增强图像对比度,使文字更加清晰。 - **噪声去除**:通过开闭运算等方法去除图像中的小噪声点。 5. **集成Tesseract OCR**: Tesseract是一个开源的OCR引擎,与OpenCV结合可以实现高效的OCR识别。安装Tesseract库,然后在OpenCV程序中调用其API,读取预处理后的图像,进行文字识别。 6. **Qt界面设计**: 使用Qt Designer创建用户界面,添加“打开图片”按钮,让用户选择要识别的图像;“识别”按钮触发OCR过程;“显示结果”区域用于呈现识别出的文字。 7. **代码实现**: - **图像加载**:使用Qt的QFileDialog类获取用户选择的图像文件。 - **预处理**:调用OpenCV的相关函数对图像进行预处理。 - **OCR识别**:调用Tesseract的API进行文字识别,获取识别结果。 - **结果显示**:将识别到的文本显示在Qt界面的指定区域。 8. **优化与改进**: - **文字定位**:在识别前,可以使用OpenCV的边缘检测、轮廓检测等方法找到可能包含文字的区域,提升识别精度。 - **语言模型**:根据预期的识别语言,设置Tesseract的语言参数,提高特定语言的识别率。 - **后处理**:识别结果可能存在错误,可以采用NLP(自然语言处理)技术进行校正。 9. **总结**: 结合OpenCV的图像处理能力和Qt的用户界面设计,我们能构建一个实用的OCR文字识别系统。通过对图像的预处理、利用Tesseract进行识别以及在Qt中展示结果,用户可以方便地进行文字提取,广泛应用于文档扫描、自动填表等领域。不断优化和调整算法,可以进一步提高识别准确性和用户体验。
2025-09-04 15:33:26 2.75MB opencv ocr
1
《西瓜答题工具:OCR技术在在线答题游戏中的应用》 在当今互联网时代,各种在线答题游戏如雨后春笋般涌现,例如“冲顶大会”、“百万英雄”和“芝士”等,吸引了大量用户参与。为了提升答题效率和正确率,一种名为“西瓜答题工具”的应用程序应运而生。该工具巧妙地融合了OCR(Optical Character Recognition,光学字符识别)技术,实现了自动识别题目并迅速搜索答案的功能,同时也通过计算选项权重,为用户提供更加科学的答题策略。 我们来深入了解OCR技术。OCR是一种将图像中的文字转换成可编辑、可搜索的文本格式的技术。在西瓜答题工具中,OCR技术的应用至关重要。当用户开启直播答题时,工具会实时捕捉屏幕上的题目图像,通过高效的图像处理算法,快速识别出文字内容,从而将题目转化为机器可理解的数据。这一过程极大地减少了用户手动输入题目的时间,为快速找到答案赢得了宝贵的时间。 西瓜答题工具在获取题目后,会通过内置的搜索引擎与大数据分析技术,迅速在海量信息中找出最可能的答案。搜索引擎的运用,使得工具能够及时从网络上获取最新的知识和资讯,确保答案的准确性和时效性。同时,通过对历史答题数据的学习和分析,工具还能预测每个选项的正确率,计算出每个答案的权重,为用户提供答题决策参考。 此外,西瓜答题工具还具有一定的智能优化功能。它可以根据用户的答题习惯和正确率,不断学习和调整其搜索策略和权重计算方法,使得工具在长时间使用后,能更加精准地辅助用户答题。这种自我学习和优化的能力,使得西瓜答题工具在同类应用中脱颖而出。 然而,值得注意的是,虽然此类工具在一定程度上提高了答题的便捷性,但过度依赖可能会削弱用户自身的知识积累和思维能力。因此,用户在使用西瓜答题工具的同时,也应注重自身的学习和思考,以达到娱乐与学习相得益彰的效果。 “西瓜答题工具”通过OCR技术与大数据分析,为在线答题游戏提供了高效、智能的解决方案,不仅节省了用户的时间,还通过计算选项权重,提升了答题的准确性。随着技术的不断发展,我们可以期待这类工具在未来会带来更多的创新和惊喜。
2025-09-03 16:29:52 679KB 西瓜答题 OCR 答题工具
1
项目细节: 首先载入源图像,并进行尺寸预处理。 载入源图像image并作拷贝为org,将image按原始h,w的比例大小设置为高度为500的图像。 进行边缘检测和轮廓检测 在灰度化->边缘检测->轮廓检测后,将轮廓按轮廓的面积进行排序(注意这里默认是顺序的即从小到大,我们需要从大到小排序,所以reverse = True),取面积最大的前5个轮廓,并用多边形逼近(cv.approxPolyDP)的方法将轮廓近似出来,因为检测的轮廓有圆形有长矩形,我们需要的检测的目标轮廓是四边形(类似于矩形)。所以我们经过筛选得到我们需要的四边形的坐标。 坐标的透视变换 由多边形逼近轮廓的方法得到的坐标 是每个轮廓逆时钟方向的各个顶点的坐标,而我们想要顺时针方向的各个顶点的坐标,所以需要先对轮廓坐标重新排序。接着需要求出四边形轮廓的高和宽,来创建一个dst数组:该数组为[[0,0],[width-1,0],[width-1,height-1],[0,height-1] 。将四边形轮廓坐标和dst输入到cv.getPerspectiveTransform 函数里,得到透视变换的M矩阵。接着将用M矩阵对原图像做透视变化,其中得出的warped的大小为(width,height),这样透视变换就做完了。 简单点说:首先读取两个坐标数组,计算变换矩阵;然后根据变换矩阵对原图进行透视变换,并输出到目标画布, OCR识别OCR识别之前要对待识别的图像进行预处理,即灰度二值化,接着利用ocr指令来识别。 源码: import cv2 as cv import numpy as np import pytesseract def order_point(pts): rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts,axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transfer(image,pts): rect = order_point(pts) (tl,tr,br,bl) = rect width1 = np.sqrt((tr[0]-tl[0])*(tr[0]-tl[0])+(tr[1]-tl[1])*(tr[1]-tl[1])) width2 = np.sqrt((br[0]-bl[0])*(br[0]-bl[0])+(br[1]-bl[1])*(br[1]-bl[1])) width = max(width1,width2) #python中有max函数和np.max函数,前者是比较两个数值的大小取最大值,后者是取出数组的最大值 height1 = np.sqrt((tr[0]-br[0])*(tr[0]-br[0])+(tr[1]-br[1])*(tr[1]-br[1])) height2 = np.sqrt((tl[0]-bl[0])*(tl[0]-bl[0])+(tl[1]-bl[1])*(tl[1]-bl[1])) height = max(height1,height2) dst = np.array([[0,0],[width-1,0],[width-1,height-1],[0,height-1]],dtype="float32") M = cv.getPerspectiveTransform(rect,dst) warped =cv.warpPerspective(image,M,(width,height)) return warped def resize(image,height=None): if height is None: return image else : h,w= image.shape[:2] #shape:h,w,channel image[h(row),w(col),channel] r = height/h width = int(w*r) #关于size函数参数的一般是(宽,高) image = cv.resize(image,(width,height),interpolation=cv.INTER_AREA) #还有resize(img,(宽,高)),即先列后行 return image #利用cv.bounding()得到x,y,width,height #其它情况一般都是先行后列(高,宽) #如shape得到参数,或者roi区域内部参数,建立新的Mat 都是先行后列 image = cv.imread("E:\opencv\picture\page.jpg") orig = image.copy() image = resize(image,height=500) ratio = orig.shape[0]/500 #边缘检测 image_gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) image_gray = cv.GaussianBlur(image_gray,(5,5),0) image_edge = cv.Canny(image_gray,75,200) #轮廓检测 image_contours = cv.findContours(image_edge.copy(),cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)[1] countours = sorted(image_contours,key=cv.contourArea,reverse=True)[:5] for c in countours: arc = cv.arcLength(c,closed=True) approx = cv.approxPolyDP(c,arc*0.02,True) if len(approx) == 4: screen_shot = approx break cv.drawContours(image,[screen_shot],-1,(0,0,255),2) warped =four_point_transfer(orig,screen_shot.reshape(4,2)*ratio) cv.imshow('warped_window',resize(warped,height=650)) warped =cv.cvtColor(warped,cv.COLOR_BGR2GRAY) scan = cv.threshold(warped,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)[1] cv.imwrite("E:/opencv/picture/scan.png",scan) cv.imshow("scan ",scan) scanstring = pytesseract.image_to_string(scan) print(scanstring) cv.waitKey(0) cv.destroyAllWindows() 在这个图像处理案例中,主要涉及了以下几个关键技术点: 1. 图像预处理: - **图像尺寸预处理**:通过`resize`函数调整图像尺寸,确保图像高度为500像素,保持原图像的宽高比例。这一步骤是为了统一处理不同大小的图像,使其适应后续的处理算法。 - **灰度化**:使用`cv.cvtColor`函数将彩色图像转换为灰度图像,简化图像特征,便于边缘检测和轮廓识别。 - **边缘检测**:采用Canny算法`cv.Canny`进行边缘检测,识别图像中的边界,帮助分离文字区域。 2. 轮廓检测与筛选: - **轮廓检测**:使用`cv.findContours`找出图像中的所有轮廓,`cv.RETR_LIST`确保获取所有独立的轮廓,`cv.CHAIN_APPROX_SIMPLE`压缩轮廓信息以节省内存。 - **轮廓排序与筛选**:按照轮廓面积进行降序排序,选择前五个最大的轮廓,这是因为文字区域通常比背景区域的面积更大。通过`cv.approxPolyDP`进行多边形逼近,去除非四边形轮廓,保留类似矩形的四边形轮廓,以精确选取文本区域。 3. 坐标变换与透视变换: - **坐标排序**:将轮廓坐标按照顺时针方向重新排序,这是为了满足`cv.getPerspectiveTransform`函数的需要,它需要按顺序的顶点坐标。 - **创建dst数组**:dst数组定义了目标四边形的四个顶点,即一个标准的矩形。 - **计算透视变换矩阵**:利用`cv.getPerspectiveTransform`得到将四边形轮廓坐标转换为dst矩形的透视变换矩阵`M`。 - **执行透视变换**:通过`cv.warpPerspective`函数,应用M矩阵对原图像进行透视变换,生成warped图像,使文字区域变为标准矩形。 4. OCR识别: - **预处理**:将warped图像转为灰度图像并进行二值化,使用`cv.threshold`和`cv.THRESH_BINARY|cv.THRESH_OTSU`进行自动阈值设定,提高文字识别的准确性。 - **OCR识别**:使用`pytesseract.image_to_string`对二值化后的图像进行文字识别,将图像转换为可读的文本字符串。 总结来说,这个案例展示了如何通过OpenCV库进行图像处理,包括尺寸调整、边缘检测、轮廓识别、坐标变换以及最终的OCR文字识别。这些步骤是图像分析和自动化文本提取的关键技术,常用于文档扫描、图像识别和信息提取等领域。
2025-07-30 21:48:04 21KB opencv python ocr
1
百度OCR识别Dll_paddleOCR_v2.1.1dll_离线识别dll
1
【更新】熊猫精灵脚本助手V3.1 熊猫精灵脚本助手官网,熊猫精灵脚本助手,熊猫精灵,脚本录制,找图找色点击,脚本生成,模拟按键,脚本工具,ocr识别,验证码识别
2025-04-23 14:15:40 33.61MB
1
cn.PaddleOcr 支持PP-OCRv2、PP-OCRv3、PP-OCRv4三个版本ocr识别 支持net35; net40; net45; net451; net452; net46; net461 net462; net47; net471; net472; net48; net481; netstandard2.0; netcoreapp3.1; net5.0; net6.0; net7.0; net8.0
2024-06-14 20:19:30 399.22MB OCR文字识别 c#框架
1
随着智能时代的的发展,越来越多的人工被取代,高铁动车进出站闸机使用身份证识别省去人工检票,进站前人证合一使用身份证识别自动提取身份证头像与本人对比省去人工比对,大大减少人工,提高效率加快进站速度;手机购物、金融等app绑定银行卡使用银行卡识别扫一扫即可识别出银行卡号并自动录入省去手工输入卡号减少误差提高用户体验度;名片识别扫一扫即可识别出名片上的所有信息并且可直接保存成电子档省去手工存号码;车牌识别用于停车场进出口、交警查车有着重大的作用,通过车牌识别与数据库联合可知道车辆及车主的所有信息和违章情况,北京中安未来在OCR识别有着长久的历史,可靠的技术。
2024-05-29 18:42:01 774KB OCR
1
1. 样本图片准备 2. 打开 jTessBoxEditor ,选择 Tools -> Merge TIFF,打开对话框,选择训练样本所在文件夹,并选中所有要参与训练的样本图片 3 弹出保存对话框,还是选择在当前路径下保存,文件命名为ty.cp.exp6.tif 4. tesseract ty.cp.exp6.tif ty.cp.exp6 -l ty batch.nochop makebox 5. 打开 jTessBoxEditor ,点击 Box Editor -> Open ,打开步骤2中生成的ty.cp.exp6.tif ,会自动关联到 “ty.cp.exp6.box” 文件: 6. 使用echo命令创建字体特征文件 echo cp 0 0 0 0 0>font_properties. 输入内容 “cp 0 0 0 0 0” 7. 使用 tesseract 生成 ty.cp.exp6.tr 训练文件 在终端中执行以下命名: tesseract ty.cp.exp6.tif ty.cp.exp6 nobatch box.train 8. 生成字符集文件 在终端中执行以下命令: unicharset_extractor ty.cp.exp6.box 9. mftraining -F font_properties -U unicharset -O ty.unicharset ty.cp.exp6.tr 与 cntraining ty.cp.exp6.tr 生成之后手工修改 Clustering 过程生成的 4 个文件(inttemp、pffmtable、normproto、shapetable)的名称为 [lang].xxx。这里改为 ty.inttemp、ty.pffmtable、ty.normproto、ty.shapetable。 10. 合并数据文件 在终端中执行以下命令: combine_tessdata ty. tesseract b01.jpg result -l ty --psm 7
1
超强OCR识别软件多语言免安装版.zip
2024-03-05 19:44:04 364.71MB OCR
1
C# PaddleInference OCR识别 学习研究Demo,完整Demo,可直接运行 VS2022+.net4.8+ OpenCvSharp4+Sdcb.PaddleInference https://blog.csdn.net/lw112190/article/details/131554433 //读自己加密后的模型文件,解密后写入byte[] byte[] programBuffer = new byte[Length]; byte[] paramsBuffer = new byte[Length]; fixed (byte* pprogram = programBuffer) fixed (byte* pparams = paramsBuffer) { PaddleNative.PD_ConfigSetModelBuffer(det_ptr, (IntPtr)pprogram, programBuffer.Length, (IntPtr)pparams, paramsBuffer.Length); }
2024-01-03 13:10:38 180.85MB