内容概要:本文详细介绍了如何利用FPGA和Verilog编程实现16x16点阵屏的汉字动态显示系统。首先讨论了汉字存储方案,采用二维数组存储点阵数据并用case语句进行硬编码。接着阐述了动态扫描部分,运用双缓冲技术和状态机实现稳定的扫描机制。文中还讲解了左右移动、调速、暂停等功能的具体实现方法,如通过改变时钟分频系数调节速度,以及通过使能信号控制暂停。此外,作者分享了一些调试经验和移植到Vivado平台时需要注意的问题,如时钟约束和IP核替换。 适合人群:具有一定FPGA和Verilog编程基础的学习者、开发者。 使用场景及目标:适用于希望深入了解FPGA点阵屏显示原理和技术细节的人群,目标是能够独立完成类似项目的开发。 其他说明:文章提供了大量代码片段作为参考,帮助读者更好地理解和实践相关技术。同时提醒读者注意一些常见的错误和注意事项,如点阵消隐、跨时钟域信号同步等。
2025-06-08 15:54:36 133KB FPGA Verilog Quartus
1
QuartusProgrammerSetup-17.1.1.593-windows quartus 下载程序专用安装包 配合生产人员使用
2025-05-23 14:19:33 355.68MB FPGA Quartus
1
Quartus ii 13.0 破解文件
2025-05-03 13:51:02 27KB Quartus 13.0
1
锁相环(PLL:Phase-lockedloops)是利用反馈(Feedback)控制原理实现频率及相位的同步技术。其核心作用是保持电路输出的时钟与外部参考时钟同步,从而在外部参考时钟的频率或相位发生变化时,PLL会检测到这种变化并通过内部反馈系统调节输出频率,直到两者重新同步,这种同步也被称为“锁相”。 PLL具有以下特征:无剩余频差锁定,良好的窄带载波跟踪性能,以及良好的宽带调制跟踪性能。在FPGA中实现UART通讯协议时,稳定时钟是稳定通讯的基础和前提。PLL的应用有助于提高FPGA中UART通讯的正确性、高效性和稳定性。 Quartus II是一款由Altera公司开发的FPGA/CPLD设计软件,广泛应用于电子系统的设计、模拟、测试和配置。在Quartus II中调用PLL模块时,首先要在工程下,通过主窗口的菜单栏选择“Tools->MegeWizard Plug-In Manager”。此操作将进入一个配置界面,需要设置PLL例化选项、器件库、编译语言以及PLL例化输出文件名。 选择PLL例化选项时,应选中“Installed Plug-Ins->I/O->ALTPLL”。器件库选择应依据所用FPGA系列,如本例程中使用的Cyclone IV系列器件库。编译语言选项应依据工程需求,本例中以Verilog HDL为例,故选择Verilog HDL。PLL例化输出文件名及其路径可以根据工程目录或自定义文件夹设置,如果文件不存在,需手动建立,并注意文件后缀名为“.v”。 完成上述设置后,进入PLL锁相环设置输入频率向导。在该页面需要设置PLL锁相环的输入频率,该频率根据使用的FPGA型号有所不同。例如,若使用25MHz晶振,则在该页面中设置输入频率为25MHz。 在接下来的配置页面中,可以设置PLL输出的多个频率的时钟信号。每个时钟信号的配置包括是否使用该时钟信号、调节输出时钟频率、改变占空比等。可通过直接输入频率或选择分频、倍频输入系数来调节输出时钟频率。分频和倍频可同时使用以产生更多的频率范围。 在EDA选择界面中可以根据需要进行选择,若没有特殊需求,可直接点击Next进入下一项。在Summary界面中选择输出文件,点击Finish后PLL的IP核例化文件生成结束。 完成以上步骤后,PLL模块就配置完成,可以通过Quartus II的EDA仿真工具进行仿真测试,验证PLL模块的功能是否正确。这样,开发者就可以在Quartus II环境下使用PLL模块优化FPGA设计,提高设计的性能和效率。
2025-04-20 19:34:28 710KB QuartusII Altera FPGA
1
基于fpga的2psk调制解调器实现,代码包括quartus和vivado两个工程版本,使用到的所有滤波器全部采用matlab设计参数,verilog代码实现,没有调用滤波器ip,可以进行任意调整或者采用其他厂家fpga实现,quartus版本代码采用modelsim仿真,vivado使用其自带仿真软件仿真。 下图是一些仿真以及滤波器频谱图. 在现代通信领域,数字调制解调技术扮演着至关重要的角色,其中2PSK(二进制相位偏移键控)调制解调器是一种广泛使用的数字调制方式。随着可编程逻辑设备如FPGA(现场可编程门阵列)的发展,利用FPGA实现2PSK调制解调器成为了一种灵活高效的解决方案。本文将详细介绍基于FPGA的2PSK调制解调器的实现,包含quartus和vivado两个工程版本,并且重点阐述了使用matlab设计参数以及verilog代码实现的过程。 从系统设计的角度来看,2PSK调制解调器的实现可以被分为两个主要部分:调制部分和解调部分。在调制过程中,数字基带信号被转换成相应的模拟信号,而解调过程则是调制过程的逆过程,即将模拟信号恢复成原始的数字信号。在FPGA实现中,这两个过程都通过硬件描述语言如verilog来编程实现。 为了确保通信系统的性能,设计者通常需要对信号进行滤波处理。在这个项目中,所有滤波器的设计都采用了matlab工具。通过matlab,设计者可以首先进行理论设计和仿真,优化滤波器的参数,以满足特定的性能指标。在参数确定后,这些设计参数会被转化成FPGA可识别的verilog代码,最终在FPGA硬件上实现滤波功能。 本项目中的FPGA工程版本有两个,分别对应于quartus和vivado这两个不同的设计环境。Quartus是由Altera公司(现为Intel旗下)开发的FPGA设计软件,而Vivado则是Xilinx公司提供的新一代设计套件。两种环境都有各自的优势和特点,设计师可以根据项目的具体需求和个人习惯选择使用。值得注意的是,quartus版本的代码使用了modelsim进行仿真测试,而vivado版本则使用了其自带的仿真软件进行仿真。 整个FPGA工程的实现过程,从最初的verilog代码编写,到最终在硬件上的测试验证,是一个复杂且细致的过程。设计者需要对verilog语言有深入的理解,并且掌握FPGA的编程和调试技巧。在编码过程中,除了基本的调制解调算法实现外,还需要考虑信号的同步、误差控制、资源优化等多个方面。 本项目中,设计者还提供了关于2PSK调制解调器实现的详细技术分析和深入的技术细节描述。这包括了对系统架构的讨论、信号处理流程的解释以及在实现过程中可能遇到的技术挑战和解决方案。这些分析内容对于理解整个系统的实现有着至关重要的作用。 在文档中提到的仿真和滤波器频谱图,是验证设计正确性和性能评估的重要工具。通过这些图表,设计者可以直观地看到信号在调制解调过程中的变化,以及滤波器在不同频段上的表现,从而对系统的性能进行评估和调整。 基于FPGA的2PSK调制解调器的实现是一个涉及信号处理、硬件编程和系统仿真等多个方面的复杂工程。通过本项目的实现,不仅可以掌握2PSK调制解调的核心技术,而且能够深入理解FPGA在数字通信系统中应用的潜力和优势。
2025-04-16 18:01:54 1.55MB matlab fpga开发
1
自适应陷波器FPGA实现:高效消除特定频率干扰信号的算法与仿真分析,包含Quartus源码与ModelSim仿真验证。,自适应陷波器的FPGA实现 作用:消除特定频率的干扰信号 包含quartus源码与modelsim仿真 ,核心关键词:自适应陷波器;FPGA实现;消除特定频率干扰信号;Quartus源码;Modelsim仿真。 关键词以分号分隔,如上所示。,"FPGA实现自适应陷波器:干扰信号消除的实践" 在现代电子系统中,干扰信号是影响通信和数据传输质量的重要因素,尤其是那些具有特定频率的干扰信号。为了解决这一问题,自适应陷波器被广泛研究与应用。自适应陷波器通过动态调整其参数,能够高效地消除或削弱特定频率的干扰信号,从而保障通信系统的稳定性和数据的准确性。 本文将深入探讨自适应陷波器在FPGA(现场可编程门阵列)上的实现方法,以及相关算法的设计与仿真分析。FPGA由于其可编程性和并行处理能力,成为实现复杂数字信号处理任务的理想选择。在FPGA上实现自适应陷波器,不仅可以快速响应环境变化,还能通过硬件描述语言(如VHDL或Verilog)来定制具体的硬件电路结构。 研究中所采用的核心算法是关键所在,它需要能够根据输入信号的特性实时调整陷波器的参数,从而达到最佳的抑制效果。这些算法通常依赖于复杂的数学模型,如最小均方误差(LMS)算法或者递归最小二乘(RLS)算法。这些算法在Quartus软件中得以实现,Quartus是Altera公司推出的一款FPGA设计软件,支持从设计输入、编译、仿真到下载配置的完整设计流程。 ModelSim是另一种常用的仿真工具,它可以对FPGA设计进行更为精确的仿真验证。通过ModelSim,设计者可以在实际下载到FPGA芯片之前,对自适应陷波器的行为进行详尽的测试和调试。仿真验证是确保FPGA实现正确性和可靠性的关键步骤,它可以帮助设计者发现和修正设计中的逻辑错误,提高产品的质量。 文中提到的“rtdbs”可能是指某种特定的应用背景或技术术语,但在没有更多上下文的情况下难以准确界定其含义。由于文件列表中包含多个不同后缀的文档文件,我们可以推测这些文档可能包含了关于自适应陷波器设计的理论基础、算法细节、仿真实现以及实验结果等多方面的内容。 自适应陷波器的FPGA实现是一个结合了理论研究与工程实践的复杂项目。它不仅需要深厚的理论知识,还需要熟练掌握FPGA设计工具和仿真验证技巧。通过本文的分析与探讨,我们可以看到自适应陷波器在提高电子系统性能方面的重要作用,以及FPGA在其中所扮演的关键角色。
2025-04-12 19:31:33 471KB
1
Quartus II软件制作,使用Quartus II的电路仿真功能,制作的8-3线译码器电路设计。Quartus II仿真可以使用波形仿真功能,便于学习理解。 笔者也是初学者,先熟悉电路仿真部分,作此文章记录Quartus II实验,留待慢慢研究学习。 Quartus II design 是最高级和复杂的,用于system-on-a-programmable-chip (SOPC)的设计环境。 Quartus II design 提供完善的 timing closure 和 LogicLock基于块的设计流程。Quartus II design是唯一一个包括以timing closure 和 基于块的设计流为基本特征的programmable logic device (PLD)的软件。
2025-04-10 18:32:33 265KB 数字电路 quartus 电路仿真 电路设计
1
FPGA点阵屏设计:汉字显示、控制与调速功能,Quartus II与Verilog开发,可移植至Vivado平台,FPGA点阵屏设计:汉字显示、控制与调速功能,Quartus II与Verilog开发,可移植至Vivado开发环境,基于FPGA的点阵屏设计,基于Quartus ii开发,Verilog编程语言,也可移植到vivado开发。 1、可以显示多个汉字 2、暂停、启动控制 3、左移右移控制 4、调速控制。 ,基于FPGA的点阵屏设计; Quartus ii开发; Verilog编程; 移植至vivado; 显示汉字; 控制功能; 调速控制,基于FPGA的点阵屏设计:多汉字显示与多种控制功能的Verilog编程实现
2025-04-06 10:49:38 2.66MB 数据结构
1
随着生活水平的提高,医疗水平也不断的提高,患者需求的及时传达就显得尤为重要,因而病房呼叫系统是医院的必备设备之一,为方便患者和医护人员之间的及时联系、提高医疗服务质量都起着极其重要的作用。 设计具有以下功能: 模拟病房呼叫输入; 1.显示优先级高的呼叫病房号,模拟呼叫声 2。对优先级低的呼叫进行存储,处理完高优先级后处理再处理 3.其他扩展功能可以自行针对开发板的功能模块具体设计合理的功能。 注意:在本文中,对设计的蜂鸣器呼叫时间进行了限制,考虑实际应用,这一限制不太合理,可以自行研究修改为持续呼叫。 在本文中没有附带代码,代码移步下一篇文章《基于FPGA的病房呼叫系统的各模块附带代码》 ### 病房呼叫系统设计与实现 #### 一、概述 随着社会的进步与科技的发展,医疗服务的质量成为了衡量一个国家或地区现代化水平的重要指标之一。其中,病房呼叫系统的完善与否直接影响到患者的就医体验及医疗效率。传统的病房呼叫系统通常采用模拟电路实现,存在功能单一、扩展性差等问题。随着现场可编程门阵列(FPGA)技术的成熟及其广泛应用,基于FPGA的病房呼叫系统设计成为可能。此类系统不仅能够有效提升医疗服务水平,还能满足患者对于紧急情况下的快速响应需求。 #### 二、FPGA与VHDL语言 ##### 2.1 FPGA简介 FPGA是一种高度灵活的数字集成电路,其内部包含大量可配置逻辑单元(CLBs)、可编程互联资源以及其他专用功能模块。通过软件配置,可以在FPGA上实现几乎任意的数字逻辑功能,从而构建出复杂多变的硬件系统。FPGA具有设计周期短、开发成本低、灵活性高等优点,在通信、军事、航空航天等领域有着广泛的应用前景。 ##### 2.2 VHDL语言 VHDL(Very High Speed Integrated Circuit Hardware Description Language)是一种用于描述数字系统的硬件描述语言。它不仅可以用于FPGA的设计与仿真,还可以用于ASIC(专用集成电路)的设计。VHDL支持多种设计风格,包括行为描述、数据流描述和结构描述等,这使得设计者可以根据不同的需求选择最适合的设计方法。此外,VHDL还具有良好的可读性和可维护性,便于团队协作和项目管理。 #### 三、病房呼叫系统设计要点 ##### 3.1 系统架构 基于FPGA的病房呼叫系统主要由以下几个部分组成: - **呼叫输入模块**:负责接收来自各个病房的呼叫信号,并根据信号强度或其他标准确定信号的优先级。 - **信号处理模块**:对输入信号进行处理,确保优先级高的信号被优先响应。 - **显示模块**:显示当前最高优先级的病房号码。 - **存储模块**:存储未处理的低优先级信号,待高优先级信号处理完毕后再逐一处理。 - **蜂鸣器控制模块**:根据系统状态控制蜂鸣器发出声音提醒医护人员。 ##### 3.2 设计流程 1. **需求分析**:明确系统的功能需求,如信号的优先级划分、显示方式等。 2. **方案设计**:基于需求制定设计方案,包括模块划分、接口定义等。 3. **代码编写**:使用VHDL语言编写各个模块的代码。 4. **仿真验证**:利用Quartus II软件进行功能仿真,验证设计是否符合预期。 5. **综合与布局布线**:将设计综合成网表文件,并进行布局布线优化。 6. **硬件测试**:将生成的比特流下载到FPGA开发板上进行实物测试,确保系统正常工作。 ##### 3.3 关键技术点 - **优先级处理**:通过设置阈值或比较器来判断信号的优先级。 - **存储技术**:采用RAM或寄存器文件等存储器件来保存低优先级信号。 - **人机交互界面**:设计简洁易用的用户界面,以便医护人员快速识别并响应患者的呼叫。 #### 四、案例分析 在具体实现过程中,可以通过以下步骤来完成病房呼叫系统的开发: 1. **确定开发板**:选择适合的FPGA开发板,如题目中提到的EP1C3T144C8。 2. **模块细化**:根据系统架构细化每个模块的具体功能与接口。 3. **编写代码**:利用VHDL语言编写每个模块的代码,并进行模块间的连接。 4. **功能仿真**:在Quartus II软件中进行功能仿真,检查是否有逻辑错误。 5. **时序仿真**:进一步进行时序仿真,确保系统在实际运行中的稳定性。 6. **硬件测试**:将设计下载到开发板上进行实物测试,验证其实际表现是否符合预期。 #### 五、总结 基于FPGA的病房呼叫系统设计充分利用了FPGA的灵活性和VHDL的强大功能,实现了高效的患者呼叫管理。通过对系统的精心设计和严谨测试,不仅可以显著提升医疗服务水平,还能为患者提供更加舒适和安全的就医环境。未来,随着技术的不断进步和发展,病房呼叫系统的功能还将得到进一步拓展和完善,更好地服务于医疗领域的需求。
2025-03-31 15:37:39 39.53MB fpga开发 病房呼叫系统 VHDL语言
1
【哈尔滨工程大学】模型机设计项目工程及实验报告,完成16条指令
1