《基于Matlab Simulink与PLECS仿真的两相与三相交错并联Boost变换器研究:包含开环、单电压环及电压电流双闭环控制模态的电流均流控制效果分析》,两相交错并联boost变器仿真 三相交错并联boost变器仿真 模型内包含开环,单电压环,电压电流双闭环三种控制模态 两个电感的电流均流控制效果好 matlab simulink plecs仿真模型 ~ ,两相交错并联boost仿真;三相交错并联boost仿真;控制模态;均流控制;Matlab Simulink PLECS仿真模型,"多模态交错并联Boost变换器仿真研究"
2025-04-24 19:35:23 168KB
1
交错并联型DC-DC变换器:三台Boost变换器电压电流双闭环控制策略研究,交错并联型DC-DC变换器的Boost变换器电压电流闭环控制策略分析,交错并联型 DC-dc变器 两台 boost 变器交错并联的电压电流闭环控制 三台 boost 变器交错并联型电压电流双闭环控制 ,交错并联型DC-DC变换器; 电压电流闭环控制; 三台boost变换器; 双闭环控制。,交错并联DC-DC变换器:双闭环控制三台Boost变换器 在电力电子领域,直流到直流(DC-DC)变换器是实现电压转换的关键技术,广泛应用于电源管理系统和电子设备中。其中,交错并联型DC-DC变换器由于其能够降低电流纹波、提高功率密度、改善动态响应等优势,成为研究的热点。本文主要探讨了交错并联型DC-DC变换器中Boost变换器的电压电流双闭环控制策略。 Boost变换器是一种升压型DC-DC变换器,广泛应用于需要提高电压的场合。在多台Boost变换器进行交错并联工作时,由于各单元在时间上错开工作,可以有效减小输入和输出电流的纹波,改善系统的稳定性和动态响应性能。为了实现这一优势,必须对每台Boost变换器的电压和电流进行精确控制。 电压电流双闭环控制策略是指在系统中同时对电压和电流两个变量进行闭环反馈控制。在Boost变换器中,电流控制环通常用于实现快速的负载变化响应,而电压控制环则负责维持输出电压的稳定。通过合理的双闭环控制策略,可以实现变换器的快速动态响应和稳定的输出电压,同时抑制各种扰动,提高变换器的整体性能。 在三台Boost变换器交错并联的配置中,控制策略的实现更为复杂。需要设计一种能够协调三台变换器工作状态的控制算法,确保在不同的负载和输入条件下,每台变换器都能高效稳定地工作。这通常涉及到复杂的控制算法设计,例如PID控制、模糊控制或者基于模型的预测控制等。 此外,对于两台Boost变换器交错并联的情况,虽然控制策略相对简单,但同样需要保证两台变换器之间的同步,以及与主控制系统的有效通信。在实际应用中,需要考虑变换器的驱动电路、控制电路以及功率元件的选择和配置。 技术分析表明,随着电力电子技术的发展,交错并联型变换器在控制策略和系统性能方面都有了显著的提升。采用先进的控制算法和功率电子元件可以进一步优化变换器的性能,例如通过数字化控制实现更精确的参数调节和故障诊断功能。 交错并联型DC-DC变换器及其双闭环控制策略的研究对于提高电源转换效率、降低纹波、增强系统稳定性和可靠性具有重要意义。随着电力电子技术的不断进步,未来交错并联型DC-DC变换器将会在工业和消费电子产品中扮演更加重要的角色。
2025-04-24 16:28:49 1022KB
1
本文讨论了基于分布式控制的DC/DC变换器并联系统自动交错方案,该方案旨在实现并联DC/DC变换器的交错运行,同时在模块数量变化时自动调整,保持交错运行状态。分布式控制能够有效提升系统的灵活性与可靠性,且不使用交错线实现交错,避免了系统风险。 我们要了解什么是DC/DC变换器。DC/DC变换器是一种电力电子设备,用于将一个直流电压转换为另一个不同水平的直流电压。这种变换器在电源管理中非常关键,广泛应用于工业自动化、通信设备、计算机以及电动汽车等领域。根据控制方式的不同,DC/DC变换器有多种类型,比如降压(BUCK)、升压(BOOST)、升降压(BUCK-BOOST)等。 并联系统指的是多个相同的电源模块并联运行,以提供更大的输出功率和更好的负载分配。并联系统的优势在于它可以提供冗余、提高系统的容错能力,并且便于系统扩展。当并联系统中的模块数量变化时,为了保证每个模块的输出电压和电流波形相互协调,减少波形干扰,就需要交错运行技术。 传统交错运行控制方案通常采用集中式控制,有一个独立的控制单元来同步各个模块的开关动作,从而减少电压和电流纹波。但是,集中式控制的缺点在于它对控制单元的可靠性要求很高,一旦控制单元出现问题,整个系统可能会失效。此外,集中式控制难以应对模块数量的变化,不便于系统的模块化设计。 相对于集中式控制方案,分布式控制方案最大的特点就是不需要交错线,各模块间无额外连接,这有利于模块化设计,从而提高了系统的灵活性和可靠性。在分布式控制中,各模块自行调整其开关频率与相位,以实现交错运行。为了实现这种控制,本文提出的方案包括了脉冲整形单元、异地时钟获取环节、锁相环电路以及PWM控制信号发生电路。 脉冲整形单元负责处理主电路反馈的信号,提取并整形出系统开关信号。异地时钟获取环节通过处理不同模块的脉冲信号来获得系统时钟,而锁相环电路则用来实现模块间时钟信号的相位同步。PWM控制信号发生电路则根据系统时钟和反馈信号,生成PWM控制信号来控制变换器的开关动作。 此外,文中还提到了实验验证。通过一个三模块并联DC/DC电源系统的实验,验证了该自动交错方案的可行性。实验结果证明,该方案确实可以实现各模块的交错运行,保持系统在模块数量变化时的稳定性和可靠性。 在电子技术领域,开发板是开发和测试电子项目的常用工具。ARM开发板是指使用ARM架构处理器的开发板。在实验中,ARM开发板可以被用来实现控制系统的设计与测试,比如控制电路的PWM信号发生电路。 总结来说,基于分布式控制的DC/DC变换器并联系统自动交错方案,通过创新的控制策略和电路设计,成功实现了无交错线的交错控制,降低了系统复杂度,提高了灵活性和可靠性。这一技术进步对于提高电力电子系统的性能和效率具有重要意义,对于构建高效、可靠和灵活的电源管理解决方案有着实际的应用价值。
2025-04-24 16:26:35 326KB
1
ZVZCS移相全桥PWM变换器实现了超前桥臂零电压开关(ZVS)和滞后桥臂零电流开关(ZCS),具有结构简单、占空比丢失较小、软开关较容易实现等特点。文章全面分析了该变换器的工作原理、讨论实现软开关的条件,设计了主要参数,然后利用SIMetrix仿真软件对电路进行仿真,通过波形验证了参数设计合理、变换器实现ZVZCS。
2025-04-23 17:08:24 1010KB
1
提出了一种新型的功率因数校正单元(flyback+boost单元)。这种功率因数单元具有两种工作状态,反激变换器状态和boost电感状态。基于这种PFC单元,得到了一种新型的单级功率因数校正变换器,实验结果证明这种变换器不仅可以得到很高的功率因数,而且可以自动限制储能电容上的电压。
2025-04-23 14:13:17 129KB 电源管理
1
设计Boost-Flyback单级功率因数校正(Power factor correction,PFC)变换器主要应着眼于两点:一是功率因数(Power factor,PF)值要求;二是直流母线电压。为了给设计提供依据,本文详细推导了其功率因数及储能电容电压表达式,分析了它们与电路参数的关系,定量地给出变换器达到所需PF值的条件,指出当后NFlyback工作在电流断续模式(Discontinuous current mode,DCM)时,储能电容电压不随负载变轻而上升,避免了功率器件电压应力过高的问题。最
2025-04-23 14:06:20 282KB 工程技术 论文
1
提出一种交错控制双Boost型变换器,其包含有2个Boost单元,对应开关管的驱动信号相位差180°。对其在1个开关周期内的6种开关模态的开关通断情况和主要电压、电流的变化情况进行了详细介绍,并对变换器的性能特点进行了深入分析。实验结果表明该变换器具有以下特点:控制简单可靠,有现成的控制芯片可用;有源和无源器件都能实现软开关,不增加开关的电流、电压应力;与传统的Boost型DC/DC变换器相比,在输入、输出条件相同的情况下,输入电感和输出电容都可以减小,这是因为其输入电感电流和输出电压纹波频率都为开关频率的2倍,达到了倍频的效果。
2025-04-22 15:57:12 965KB
1
24年电赛A题-AC-AC变换电路并联运行(原理图+代码+仿真文件)Maltlab文件,输出幅度可调波形,详细见博客:https://blog.csdn.net/qq_62316532/article/details/140841537
2025-04-19 16:00:13 34KB
1
【图像识别】基于Hough变换指针式仪表识别(倾斜矫正)matlab代码.zip这个压缩包文件主要包含了一个使用Matlab实现的图像处理项目,该项目专注于指针式仪表的识别和倾斜矫正。以下是对相关知识点的详细说明: 1. **Hough变换**:Hough变换是一种在图像中检测直线、圆等几何形状的方法。它通过创建一个参数空间(Hough空间),将图像空间中的点映射到Hough空间中的线,从而找出图像中可能存在的直线。在本项目中,Hough变换用于识别仪表盘上的指针。 2. **图像预处理**:在进行图像识别之前,通常需要对原始图像进行预处理,包括灰度化、二值化、噪声去除等步骤。灰度化将彩色图像转换为单色图像,简化后续处理;二值化将图像分为黑白两种颜色,有助于突出目标特征;噪声去除则可以减少不相关信息,提高识别精度。 3. **倾斜矫正**:由于实际拍摄或扫描的图像可能存在角度偏差,因此需要进行倾斜矫正。这通常通过计算图像的透视变换矩阵实现,将图像校正至水平状态,确保指针与坐标轴平行,以便于后续的分析和识别。 4. **边缘检测**:在图像处理中,边缘检测是找出图像中不同亮度区域交界处的重要技术。Canny、Sobel或Prewitt等算法常用于此。在本项目中,边缘检测帮助识别出仪表盘的边界和指针的轮廓。 5. **图像阈值设定**:在二值化过程中,需要设定合适的阈值来区分背景和目标。动态阈值或自适应阈值方法可能更适用于具有复杂光照条件的图像。 6. **图像轮廓提取**:边缘检测后,可以通过查找连续像素点来提取目标物体的轮廓。在本例中,这一步骤有助于分离指针和其他仪表盘元素。 7. **形状分析**:在找到指针的轮廓后,可以通过形状分析(如面积、周长、形状因子等)来确认其是否为目标。指针通常具有特定的形状,如三角形或箭头形,这可以帮助识别。 8. **角度计算**:确定指针角度是识别的关键。这通常通过计算指针端点与基准线(例如仪表盘刻度的垂直线)之间的角度差来完成。可以使用向量的叉乘或极坐标转换来实现。 9. **Matlab编程**:作为标签所示,本项目使用了Matlab,这是一种强大的数值计算和可视化工具,内置丰富的图像处理函数库,使得图像识别和处理任务变得更为便捷。 10. **应用领域**:该技术可应用于工业自动化、机器人视觉导航、智能仪表读取等多个领域,特别是在需要自动读取和理解指针式仪表数据的场景中,例如汽车仪表盘读数的自动记录。 以上就是基于Hough变换的指针式仪表识别及倾斜矫正的Matlab代码所涉及的主要知识点,这些技术在现代图像处理和计算机视觉中有着广泛的应用。通过学习和理解这些概念,可以提升图像识别的准确性和自动化程度。
2025-04-18 13:11:33 1.27MB matlab
1
内容概要:本文详细介绍了基于Simulink平台的LLC谐振变换器电压电流双环竞争控制仿真实践。文章首先解释了双环竞争控制的基本概念及其优势,即电压环和电流环分别监控输出电压和谐振电流,根据误差大小动态调整开关频率,从而提高系统的响应速度和稳定性。接着,作者分享了具体的建模方法和技术细节,包括谐振参数计算、控制逻辑实现以及增益曲线绘制等。文中提供了多个MATLAB/Simulink代码片段,帮助读者理解和复现实验过程。此外,作者还特别指出了一些常见的仿真陷阱和解决方案,如器件库版本兼容性问题、仿真步长选择等。 适合人群:从事电力电子研究或开发的技术人员,尤其是对LLC谐振变换器感兴趣的工程师。 使用场景及目标:适用于希望深入了解LLC谐振变换器内部工作机制的研究人员和技术爱好者。通过本文的学习,读者能够掌握如何利用Simulink进行复杂的电力电子系统仿真,特别是双环竞争控制的设计与优化。 其他说明:文章不仅提供了理论指导,还包括大量实用的代码示例和波形分析,有助于读者更好地理解双环竞争控制的实际应用效果。同时,针对不同版本软件用户的注意事项也被提及,确保更多人可以从中学到有用的知识。
2025-04-17 21:19:15 339KB
1