内容概要:本文介绍了使用Matlab编写无迹卡尔曼滤波(UKF)算法实现锂电池SOC(荷电状态)估计的完整方法,包含状态方程建模、sigma点生成、协方差预测与更新等UKF核心步骤,并引入噪声系数自适应机制以提升滤波鲁棒性。采用二阶RC等效电路模型,结合OCV-SOC关系进行状态预测,通过新息检测动态调整过程噪声Q和观测噪声R,有效应对模型偏差。与传统EKF相比,UKF避免了雅可比矩阵计算,在SOC平台区具有更高估计精度。
适合人群:具备Matlab编程基础、熟悉电池管理系统(BMS)开发的工程师或研究生,尤其适合从事状态估计、滤波算法研究的技术人员。
使用场景及目标:①实现锂电池SOC高精度估计;②掌握UKF在非线性系统中的应用;③理解并实现噪声自适应策略以提升滤波器实际运行稳定性。
阅读建议:建议结合Matlab仿真环境运行代码,重点关注状态方程、sigma点传播及噪声自适应逻辑,可进一步替换为实测数据验证算法性能。
2025-11-23 12:34:56
386KB
1