C# WPF上位机基于Modbus RTU实现串口通信与可视化数据处理,支持实时报警与历史查询,结合MVVM思想开发报表及数据可视化功能,C#WPF上位机 Modbus RTU通讯协议 使用MVVMLight框架 MVVM思想 进行项目分层 使用NPOI可进行导入Excel表格 制作报表 学习专用 使用Modbus Poll 以及Modbus Slave仿真实践通过 仿真实践项目 使用SerialInfo 进行 RTU 自己写一些简单的读写操作 可实时显示 串口仿真方传来的数据 进行可视化处理 可查询以往报警数据 在历史曲线可以看到历史 三台机器的报警比例 以及次数 , 还有报警时间以及报警数值的可视化 可以查询历史报警数据 精确到秒 ,C#; WPF; 上位机; Modbus RTU; MVVMLight框架; MVVM思想; 项目分层; NPOI; Excel报表; Modbus Poll; Modbus Slave; SerialInfo; RTU通讯; 读写操作; 实时显示; 串口仿真; 数据可视化; 查询报警数据; 历史曲线; 报警比例; 报警次数; 报警时间; 报
2026-01-27 07:50:17 395KB 开发语言
1
本文详细介绍了N32系列微控制器中串口空闲中断与DMA结合接收不定长数据的实现方法。主要内容包括:1) USART_DAT寄存器8位数据接收机制;2) DMA空闲中断服务函数中禁用和启用DMA通道的正确操作方式;3) DMA通道请求重映射配置;4) 完整的代码实现,涵盖GPIO初始化、UART配置、DMA初始化和NVIC中断设置。特别强调了在空闲中断中禁用DMA通道后重新启用的关键步骤,以避免数据从缓冲区尾部继续写入的问题。文中提供了function.c、function.h、n32g430_it.c和main.c的完整代码示例,展示了如何实现115200波特率的串口通信,并通过DMA接收不定长数据后处理。 在嵌入式系统开发中,微控制器的串口通信扮演着至关重要的角色。特别是对于如STM32这类功能丰富的微控制器,能够高效地处理串口数据尤其关键。本文详细剖析了如何在N32系列微控制器中实现串口空闲中断与DMA(Direct Memory Access)相结合的接收机制,这一技术可以有效应对不定长数据的高效接收与处理。 文章详细说明了USART_DAT寄存器8位数据接收机制,这是串口通信数据接收的基础。了解寄存器的工作方式对于掌握数据流的控制至关重要,尤其是在需要精确控制接收数据长度时。随后,文章转入DMA空闲中断服务函数的处理,强调了在此过程中正确操作DMA通道的重要性。特别指出,在空闲中断中禁用和重新启用DMA通道的步骤,这是避免数据写入错误的关键。 文章接着详细讲解了DMA通道请求重映射的配置方法。在不同的应用场景下,根据硬件设计的需求,可能需要将DMA通道映射到不同的硬件端口上。这一配置步骤对于整个数据传输流程的稳定性至关重要。接下来,作者提供了完整的代码实现,覆盖了从GPIO初始化、UART配置、DMA初始化到NVIC中断设置的各个环节。在这一部分,作者不仅展示了代码,还对代码中的关键步骤进行了细致的解释,确保开发者能够理解和应用。 代码示例中,提供了function.c、function.h、n32g430_it.c和main.c四个文件,这些代码展示了如何设置115200波特率的串口通信,并通过DMA接收不定长数据后进行处理。这一实践示例为开发者提供了可直接借鉴和修改的框架,大大简化了开发流程。 本文的精华部分在于对于DMA接收不定长数据的处理机制的介绍。通过DMA的使用,系统能够在不占用CPU资源的情况下,实现数据的连续接收和处理。而结合串口空闲中断,可以在数据接收结束时触发特定事件,从而执行数据的后处理。这为需要处理大量数据的应用提供了高效的解决方案。 在嵌入式系统开发中,对于不同硬件资源的合理配置和高效使用是提升系统性能的关键。本文章通过介绍N32系列微控制器的具体应用,展示了如何通过软件编程实现硬件资源的最大化利用。通过深入理解USART_DAT寄存器、DMA以及中断的交互使用,开发者可以构建出更加稳定和高效的通信系统。 文章最后还特别强调了在空闲中断处理中重新启用DMA通道的重要性,这是确保数据完整性,防止缓冲区溢出或数据丢失的关键步骤。这一部分的详细讲解有助于开发者在实际项目中避免常见的错误,提高了开发的成功率和系统的可靠性。 随着物联网和智能设备的快速发展,嵌入式系统的应用范围变得越来越广泛。掌握如何高效利用硬件资源,实现复杂的数据通信和处理,是嵌入式系统开发者的必备技能。本文通过结合代码示例和细致的解释,为开发者提供了一条清晰的学习和应用路径。
2026-01-26 02:47:06 12KB 嵌入式开发 STM32 DMA 串口通信
1
SharpDevelop5.4.8,Version CS9.0,免安装msbuild2013,免安装VC++2012-VC++2022 Redistributed等等额外软件包,便携,装在U盘即可使用。 升级了预备可以使用C# 8.0以上版本,目前Nrefactory尚未修改,一旦修改好,就可支持C#8.0以上。 支持dotnet framework 4.8和netsdander2.0,采用Win11默认的msbuild版本和VC++ Redistributed版本。 最新的SharpDevelop版本,基本可正常使用,打包了Downgate源码,以用于降级project文件,并未来支持nomsbuild的编译。
2026-01-23 16:07:55 86.67MB SharpDevelop 开发工具
1
本文详细介绍了基于GD32F103C8T6微控制器的多串口DMA空闲中断通信程序的实现方法。代码采用C99标准编写,包含完整的硬件初始化配置、DMA传输机制、中断处理逻辑以及错误保护机制。程序支持两个串口同时工作,通过DMA循环缓冲模式实现高效数据接收,并利用空闲中断触发数据处理。关键功能包括动态DMA重配置、超时保护机制(接收100ms/发送1秒)以及状态标志管理。代码已在Keil MDK v5.30环境验证,适用于GD32F103全系列芯片,提供了硬件抽象层设计、移植注意事项及功能扩展建议。 GD32F103是基于ARM®Cortex®-M3内核的高性能32位微控制器,适用于工业应用领域。GD32F103C8T6作为这一系列的成员,具备丰富的外设接口,包括多个串行通信接口USART/UART。在多种通信应用场合中,串口通信的性能和效率直接影响到整个系统的运行状态和性能表现。 在进行多串口通信时,为了提高数据传输的效率,减少CPU的负担,DMA(Direct Memory Access)技术成为了关键。DMA允许外设直接读写内存数据,而无需CPU介入。在多串口通信应用中,使用DMA可以实现数据的高速缓冲处理,进一步提高系统效率。当系统中存在多个串口时,每个串口都可以配置DMA,这样可以实现多路数据的并发处理。 空闲中断是串口通信中一种重要的中断方式,它允许在串口没有数据传输时触发中断处理逻辑。在多串口通信中,合理利用空闲中断,可以在接收到数据后立即进行处理,从而缩短数据处理的延迟时间。结合DMA,可以实现数据的即刻接收与处理,显著提升通信效率。 本文所介绍的程序代码采用C99标准编写,不仅包含了GD32F103C8T6微控制器硬件的初始化配置,还详细说明了DMA传输机制的配置方法,以及中断处理逻辑的实现。代码中的关键部分包括动态DMA重配置,确保在通信过程中能够灵活适应不同的数据传输需求;超时保护机制,用于防止通信异常时系统资源的无限制消耗;状态标志管理,用于监控和记录数据传输和处理的状态,为系统稳定运行提供保障。 实现的程序能够支持两个串口同时工作,在这种模式下,通过DMA循环缓冲模式能够实现高效的数据接收和处理。利用空闲中断触发数据处理,能够快速响应并处理接收到的数据,提高了数据处理的实时性和效率。代码已在Keil MDK v5.30开发环境中经过验证,适用于GD32F103全系列芯片,证明了其良好的兼容性和稳定性。 文档中还提供了硬件抽象层设计,为开发者提供了硬件操作的简化接口,有利于提高代码的可移植性和复用性。同时,文档中也给出了移植时的注意事项和功能扩展的建议,这些都是为了帮助开发者更好地理解和使用该程序,以及在其基础上进行二次开发,适应更多的应用需求。 GD32F103微控制器凭借其高性能和丰富的外设资源,已成为工业控制、仪器仪表、家用电器等应用领域的优选微控制器之一。通过本文所提供的多串口DMA通信实现方法,开发者可以构建出更加高效、稳定的多串口通信解决方案,满足日益增长的通信需求。
2026-01-21 15:37:56 8KB #串口通信
1
在本文中,我们将深入探讨如何使用VC++来实现一个三态树控件(CTreeCtrl)的功能增强,特别是在实现全选、不选和部分选择的交互。三态树控件通常用于显示层次结构数据,而在此基础上增加的三态功能可以让用户更灵活地管理这些数据的选中状态。 我们要理解什么是三态树。传统的树控件通常只有两种状态:选中和未选中。而三态树则引入了一个新的状态——部分选中,这样用户可以对一组项目进行部分选择,而不必完全选中或取消选中所有项。这对于表示复杂的选中关系特别有用,例如在文件系统浏览或项目管理应用中。 为了实现这样的功能,我们需要重载`CTreeCtrl`类的一些关键成员函数。例如,我们可以重载`OnSelChanged`来处理选中状态的变化,`OnSelChanging`来处理选中状态改变前的逻辑,以及`OnGetdispinfo`来更新控件显示的信息。我们还需要自定义消息处理,可能需要添加一个新的消息,如`WM_TRISTATE_SELECT`,来处理三态选择的行为。 在遍历文件夹并填充树控件的过程中,我们需要使用Windows API函数,如`FindFirstFile`、`FindNextFile`和`FindClose`来获取和列举本地磁盘上的文件和子文件夹。每个文件夹或文件节点都可以是一个树节点,其选中状态根据实际需要设置为全选、不选或部分选中。 实现全选功能时,我们需遍历整个树结构,将所有节点设置为选中状态。部分选择则涉及更复杂的逻辑,可能需要维护一个状态数组,记录每个节点的选中状态。当用户尝试部分选择时,可以根据这个数组更新选中状态。不选则相对简单,只需清除所有节点的选中状态即可。 为了提供用户友好的界面,我们还可以添加额外的菜单选项或按钮,允许用户一键切换全选、不选和部分选择状态。同时,确保在用户进行多选操作时,控件能正确反映这些变化,例如通过右键菜单或键盘快捷键实现。 在编程实现时,需要注意性能优化,避免在大量数据遍历时导致程序卡顿。可以考虑使用异步更新或分批处理来提高用户体验。此外,良好的错误处理和异常安全也是必不可少的,以确保在出现意外情况时程序能稳定运行。 实现三态树控件需要对VC++的MFC库有深入理解,掌握`CTreeCtrl`的使用,并能够灵活运用Windows API进行文件遍历。同时,需要具备良好的编程习惯和设计模式,以构建可扩展和可维护的代码。通过以上步骤,我们可以成功创建一个功能丰富的三态树控件,用于展示和管理本地磁盘的文件夹结构。
2026-01-21 12:23:46 300KB VC++ 三态树实现 遍历文件夹
1
《VC 6.0在Windows 7上的安装与配置详解》 Visual C++ 6.0,简称VC 6.0,是微软公司发布的一款经典且功能强大的C++集成开发环境,深受许多开发者喜爱,尤其在教学和算法验证中依然有着广泛的应用。尽管它最初发布于1998年,但在Windows 7操作系统上,经过适当的配置,依然可以成功安装并运行。本文将详细介绍如何在Windows 7系统上安装和配置VC 6.0。 1. **安装步骤**: - **第一步**:双击下载好的Visual C++ 6.0安装程序,启动安装向导。 - **第二步**:点击“下一步”进入许可协议页面,阅读并接受协议条款。 - **第三步**:在“安装类型”界面,选择默认的“典型”安装,点击“下一步”。 - **第四步**:保持默认设置,继续点击“下一步”。 - **第五步**:同样选择默认设置,再次点击“下一步”。 - **第六步**:这一步选择自定义安装,以便我们进行必要的配置。 - **第七步**:在“自定义”界面,找到“Tools”选项,点击“更改选项”。 - **第八步**:在新弹出的窗口中,取消勾选红色方框内的选项,这可以避免一些兼容性问题,然后点击“确定”。 - **第九步**:返回安装向导,确认更改并点击“继续”。 - **第十步**:选中必要的组件,点击“OK”以确认组件选择。 - **第十一步**:对于提示,点击“是”以允许安装程序进行更改。 - **第十二步**:再次点击“确定”以确认安装设置。 - **第十三步**:检查是否选中“安装MSDN”,根据个人需求决定,然后点击“下一步”。 - **第十四步**:取消“现在注册”选项,选择稍后注册,最后点击“完成”。 2. **安装后的启动与配置**: - **第十五步**:安装完成后,可以在“开始”菜单找到Visual C++ 6.0的快捷方式,点击启动IDE。 - **第十六步**:首次运行可能需要配置兼容模式和管理员权限。右键点击图标,选择“属性”,在“兼容性”选项卡中勾选“以兼容模式运行这个程序”,选择“Windows XP(Service Pack 3)”,同时勾选“以管理员身份运行”。 3. **常见问题与解决办法**: - **运行错误**:如果遇到运行时错误,可能是因为缺少运行库或系统兼容性问题。可以通过安装Microsoft Visual C++ 2005 Redistributable Package等补丁来解决。 - **编译错误**:有时在编译时可能会遇到“链接器错误”,检查项目设置,确保使用正确的库和链接选项。 通过以上步骤,你将在Windows 7系统上成功安装并运行VC 6.0。虽然这个版本的IDE可能没有现代IDE那么先进,但它简洁的界面和高效的工作流程对很多开发者来说仍然具有独特的魅力。在进行算法验证或学习C++基础知识时,VC 6.0仍是一个可靠的选择。
2026-01-20 12:28:14 2.46MB  VC6.
1
本页收集了一些在VC++中进行HID设备读写的头文件:hid.lib hidpi.h hidsdi.h setupapi.lib targetver.h,需要时请引入这些头文件,链接库也要加入,至于怎么加入,百度就OK了,另附压缩包内附有一张示例图,告诉你如何引入这些头文件。 运行环境:Windows/Visual C/C++
2026-01-19 16:31:47 57KB VC/MFC源代码 文件系统源代码
1
【MFC二维码解码器程序源码】是一个基于C++编程语言,利用Microsoft Foundation Class (MFC) 库实现的二维码解码应用。MFC是微软为Windows平台开发的类库,它为C++程序员提供了构建图形用户界面(GUI)应用程序的框架。这个程序的核心功能是读取和解析位图文件中的二维码信息。 在MFC中,开发GUI应用程序通常涉及创建CWinApp类的派生类,这是MFC框架的入口点。解码器程序可能包含一个或多个CDialog派生类,用于构建用户界面,让用户可以浏览和选择要解码的位图文件。CFileDialog类可以用来提供文件选择对话框,使用户能够方便地加载包含二维码的图像。 二维码解码部分涉及到图像处理和模式识别技术。程序需要读取位图文件,这可以通过使用GDI+(Graphics Device Interface Plus)或者OpenCV等图像处理库来完成。GDI+提供了一套API用于加载、显示和操作图像。一旦图像被加载,解码器将寻找二维码的定位图案,这些通常是黑白相间的方块,位于二维码的四个角上。 接下来,程序会识别编码区域并提取模块数据。这通常通过扫描图像,检测黑色和白色像素的分布来实现。在找到定位图案后,解码器会解析版本信息和纠错级别,这些都是嵌入在二维码内的元数据。然后,根据这些信息,解码算法会恢复出隐藏的数据。 MFC中,解码过程可能会封装在一个名为CQRCodeDecoder的类中,该类包含了读取、解析和解码二维码的具体方法。解码后的数据可以以字符串形式返回,供用户查看或进一步处理。为了提高鲁棒性,解码器可能还包含错误纠正机制,这是因为二维码设计时就考虑了部分损坏的情况,能够恢复一定比例的丢失数据。 此外,标签"vc++"表明这个项目使用的是Visual C++编译器,这是微软提供的一个集成开发环境,支持创建和调试MFC应用程序。而"二维码解码"标签则强调了该项目的重点在于实现对二维码的解码功能。 在提供的压缩包文件"www.NewXing.com"中,很可能包含的是源代码文件、资源文件以及可能的项目配置文件。用户需要有相应的IDE,如Visual Studio,来打开和编译这些源代码,以运行和测试二维码解码器程序。 这个项目是一个实用的示例,展示了如何结合MFC和C++技术来处理图像数据,实现二维码的本地解码功能。对于学习C++和MFC的开发者来说,这是一个很好的实践案例,可以帮助他们理解如何将理论知识应用于实际的Windows桌面应用程序开发中。
2026-01-17 17:52:46 58KB vc++ 二维码解码
1
标题中的"ocx函数查看exe"是一个工具,用于查看OCX(ActiveX Control)控件的函数接口。OCX是Microsoft开发的一种组件技术,它基于COM(Component Object Model),允许开发者创建可重用的控件,这些控件可以被集成到Windows应用程序中,提供丰富的用户界面功能。 描述中提到,这个工具可以直接查看OCX控件的接口名称,这对于程序员来说非常实用。OCX控件的接口定义了它可以执行的操作和对外提供的服务,理解这些接口对于使用或自定义OCX控件至关重要。工具的免费提供解决了开发者寻找可靠资源的问题,因为在很多情况下,下载此类工具可能需要消耗积分,而且质量也不一定有保障。 在标签中提到了"vc++",这表明这个工具可能与Visual C++有关。VC++是Microsoft的C++开发环境,支持COM编程,因此它非常适合用来开发和使用OCX控件。使用VC++的开发者可能会对这个工具特别感兴趣,因为它可以帮助他们更有效地理解和利用OCX控件。 至于压缩包内的文件"ocx函数查看.exe",这是一个可执行文件,很可能是该工具的主程序。在Windows操作系统上,.exe文件是可直接运行的程序。为了使用这个工具,用户只需双击这个文件,按照提示操作即可查看OCX控件的函数接口信息。 OCX函数查看工具的使用通常包括以下几个步骤: 1. 打开工具:双击"ocx函数查看.exe"启动程序。 2. 加载OCX控件:在工具中输入或选择要查看的OCX控件的文件路径。 3. 查看接口:工具将解析OCX控件,并显示其包含的所有接口和函数。 4. 分析接口:开发者可以根据显示的函数名称、参数和返回值来了解控件的功能和使用方法。 "ocx函数查看exe"是一个针对VC++开发者,尤其是涉及到OCX控件开发和使用的工具,它能帮助开发者更方便地理解和使用OCX控件,提高开发效率。由于它是免费提供的,开发者无需花费积分或其他资源就能获取,大大降低了开发中的成本和门槛。
2026-01-16 16:11:42 187KB vc++
1
本文详细介绍了串口通信中数据帧的打包与解析方法,旨在解决数据包对齐和防止出错两大问题。发送端通过帧头、帧长、命令字节、数据字节、校验字节和帧尾的格式对数据包进行打包,确保数据的可靠传输。接收端采用状态机解析数据,通过定义不同的状态和状态转换条件,高效地处理接收到的数据。文章还提供了具体的实现代码,包括数据发送函数、CRC16校验代码以及状态机解析代码,方便读者在实际项目中应用。该方法经过多次实践验证,稳定可靠,适合多种通信场景。 串口通信是计算机与外部设备交换信息的常用方法,在嵌入式系统、工业控制等领域应用广泛。数据帧的打包与解析是确保通信可靠性与效率的关键步骤。在发送端,数据帧通常由帧头、帧长、命令字节、数据字节、校验字节和帧尾等部分构成。帧头用于标识一个数据帧的开始,帧长则说明了帧内数据的总字节数,命令字节包含了对数据操作的指令,数据字节承载实际的传输信息,校验字节用于检查数据在传输过程中是否出现错误,而帧尾用来标识数据帧的结束。每个部分的设计都对数据的正确传输起到至关重要的作用。 为了实现数据帧的正确打包,发送端需要按照既定的协议结构把数据组装成数据帧。确定数据帧的格式,然后根据帧头、帧长、命令字节、数据字节、校验字节和帧尾的顺序填充相应信息,最后将组装好的数据帧通过串口发送出去。数据帧在传输过程中可能会受到干扰,导致出现数据错误,因此,校验字节的设计显得尤为重要。CRC16校验是一种常用的校验方法,它能有效地检测出数据帧在传输过程中可能出现的错误。 接收端处理接收到的数据帧时,状态机解析方法显得十分高效。状态机的核心思想是将整个通信过程划分为多个状态,每个状态对应数据帧解析的不同阶段。接收端通过定义不同的状态及状态之间的转换条件,来判断数据帧的正确性和完整性。状态转换通常依赖于接收到的数据内容,例如,当状态机处于等待帧头状态时,接收到正确的帧头则转移到等待帧长状态,如果在等待帧长状态下接收到的数据不是帧长,则状态机可能重置到初始状态或者转移到错误处理状态。 文章中提供的源码包括了数据发送函数、CRC16校验算法的实现以及状态机解析数据的代码。数据发送函数负责根据协议格式打包数据帧,并通过串口发送出去。CRC16校验算法确保数据在传输过程中未被篡改或损坏。状态机解析代码则负责对接收到的数据进行分析,确保数据按照正确的格式和顺序被接收。这些代码被设计成可复用的模块,方便开发者在不同的项目中快速部署和使用。 数据帧解析的成功与否直接影响通信的质量和效率。发送端需要保证数据的正确打包,而接收端则需要正确地解析数据。通过明确的协议格式定义和有效的状态机解析策略,可以极大地提高通信的准确性和可靠性。文章中提供的方法和代码,经过多次实际应用的检验,证明了其在多种通信场景中的稳定性和可靠性。 文章不仅介绍了串口通信数据帧的打包与解析方法,还提供了实际的源码示例,对于从事软件开发、尤其是在嵌入式系统和工业自动化领域工作的工程师来说,这些信息是宝贵的资源。了解和掌握这些方法,对于设计和实现高效、可靠的串口通信系统至关重要。
2026-01-15 14:38:33 18KB 软件开发 源码
1