内容概要:本文深入探讨了FPGA中PCI和PCIe接口的实现方法,详细介绍了各个关键模块及其代码结构。主要内容涵盖PCI目标设备模块的状态机设计,用于处理PCI总线的读写操作;PCIe端点模块的设计,包括配置空间读写、TLP包解析和DMA传输等功能;以及跨时钟域数据搬运的异步FIFO设计。此外,还提供了详细的测试平台代码,帮助验证模块的功能。文章强调了模块化设计的重要性,如配置空间、状态机和数据FIFO的分离,确保系统的稳定性和可维护性。 适合人群:具备一定FPGA开发经验的研发人员,尤其是对PCI和PCIe接口感兴趣的开发者。 使用场景及目标:①理解PCI和PCIe接口的工作原理;②掌握基于Verilog的FPGA模块化设计方法;③提高FPGA项目的开发效率和稳定性。 其他说明:文中提供的代码示例和调试技巧有助于读者更好地理解和实现复杂的PCI和PCIe接口功能。建议读者在实践中结合这些内容进行实验和优化。
2025-08-13 23:48:15 127KB
1
DAC7568、DAC8168和DAC8568是德州仪器(Texas Instruments)生产的一系列高性能数字模拟转换器(DAC),广泛应用于需要精确控制模拟信号输出的场合。这些芯片具有高分辨率、低功耗等特点,适用于工业控制、仪器仪表、医疗设备等精密控制系统。FPGA(现场可编程门阵列)是一种可以通过编程进行逻辑功能实现的半导体设备,它能够提供高度定制化的硬件加速功能。Verilog是一种硬件描述语言(HDL),常用于编写电子系统级的模型,实现FPGA或ASIC的设计。 在本项目中,任务是为DAC7568、DAC8168和DAC8568系列数字模拟转换器编写基于FPGA的驱动程序,并使用Verilog语言完成。这涉及到数字逻辑设计、接口协议实现以及对DAC芯片数据手册的深入理解。编写这样的驱动程序需要与DAC的串行接口(SPI)进行交互,该接口允许FPGA通过串行数据传输来控制DAC输出。DAC的数据更新可以通过发送特定的数据包和控制命令来实现,例如通过FPGA设置适当的寄存器值来控制输出电压的大小。 在驱动程序的实现过程中,开发者需要确保按照DAC芯片的数据手册来配置相应的SPI协议参数,包括时钟极性和相位、数据位宽、帧格式和时序要求等。此外,为了保证输出信号的精度,还需要考虑信号的稳定性、噪声抑制以及电源电压的稳定性等因素。 编写完成的DAC驱动程序需要进行充分的验证,以确保其按照预期工作,满足设计要求。验证通常包括功能测试、性能测试、稳定性测试等,验证过程可以采用仿真和实际硬件测试相结合的方式。通过验证,开发者可以发现并修正设计中可能出现的问题,确保驱动程序的可靠性和稳定性。 在本项目文件列表中,Dac7568_8168_8568_Ctrl.v文件很可能是驱动程序的Verilog源代码文件,该文件负责实现与DAC系列芯片的通信协议和数据处理逻辑。文件名中的“Ctrl”暗示该文件可能包含了对DAC芯片进行控制的逻辑模块。 DAC驱动程序的开发是一个典型的嵌入式系统设计问题,其中涉及到硬件接口编程、硬件抽象层的设计以及最终的验证工作。项目成功完成可以为FPGA在模拟信号处理领域内的应用提供有力的支持,同时也展示了硬件设计语言在实际工业控制系统中的应用价值。
2025-08-10 18:40:28 1KB verilog
1
在电子设计领域,SerDes(Serializer/Demerializer)是一种用于高速数据传输的关键组件,它能够将串行数据转换为并行数据,或者反之。在本项目中,我们关注的是Aurora,一种基于SerDes技术的高带宽、低延迟通信协议。Aurora通常用于实现高速背板通信,它在系统间提供可靠的数据传输,适用于数据中心、嵌入式系统以及通信设备等多种应用场景。 Aurora协议基于8b/10b编码,这是一种常用的数字信号编解码技术。8b/10b编码通过将每8位(byte)数据扩展为10位,来确保数据流中的直流平衡,同时保留错误检测能力。这种方式可以有效防止在长距离传输时的信号失真,并且能提供一个简单的位错误检测机制。 Verilog是硬件描述语言(HDL)的一种,用于描述数字系统的结构和行为。在本项目中,Verilog被用来编写Aurora协议的实现代码,这可能包括对SerDes接口的控制逻辑、8b/10b编码器和解码器,以及与之相关的状态机等。通过Verilog,工程师可以清晰地定义数字系统的逻辑,然后将其综合成电路布局,最终在FPGA或ASIC上实现。 Vivado是一款由Xilinx公司开发的集成开发环境(IDE),它集成了设计、仿真、综合、布线以及硬件管理等功能。在SerDes的Aurora应用中,Vivado是实现和验证Verilog代码的主要工具。用户可以在Vivado中创建工程,导入Verilog源代码,配置目标FPGA的资源,设置时钟速度,进行逻辑仿真,以及生成比特流文件,最终下载到实际的硬件平台上进行测试。 在压缩包文件"47_aurora_8b10b"中,可能包含了整个Aurora SerDes实现的源代码文件、配置文件、测试平台和相关的文档。这些文件可能包括了Verilog模块,例如Aurora协议控制器、8b/10b编码器和解码器,以及用于测试和验证的激励文件。通过分析和理解这些源代码,开发者可以学习到如何在实际设计中应用Aurora协议,以及如何利用Verilog和Vivado来实现和优化这样的系统。 这个项目提供了从理论到实践的全面视角,涵盖了SerDes技术、Aurora协议、Verilog编程和Vivado使用等多个关键知识点。对于想要深入理解和应用SerDes技术的工程师来说,这是一个宝贵的学习资源。通过研究和调试这个已经测试过的工程,不仅可以提升对高速通信协议的理解,还能掌握实际设计中的问题解决技巧,这对于在IT行业,特别是嵌入式系统和通信设备领域的工作具有重要意义。
2025-08-09 11:23:52 68.87MB verilog vivado
1
SM4算法纯Verilog加密解密实现:参考软件代码、视频教程及Vivado工程,SM4算法纯Verilog加密解密实现:参考软件代码、视频教程及Vivado工程详解,SM4算法Verilog实现 [1]纯verilog实现,加密+解密 [2]提供参考软件实现代码(无需依赖库) [3]提供视频 提供VIVADO工程 ,SM4算法; Verilog实现; 纯Verilog; 加密解密; 参考软件代码; 视频; VIVADO工程,SM4算法纯Verilog实现:加密解密与Vivado工程视频参考 SM4算法是一种对称加密算法,它在中国得到了广泛的应用,尤其在信息安全领域。对称加密算法的特性是加密和解密使用相同的密钥,这使得算法相对简单且执行速度快。SM4算法采用的是4轮迭代结构,每轮迭代都使用不同的轮密钥。在实际应用中,SM4算法不仅可以用于数据加密,还可以用于数字签名和验证,保证了数据传输的安全性和完整性。 Verilog作为一种硬件描述语言,广泛应用于电子系统设计,特别是在FPGA(现场可编程门阵列)和ASIC(专用集成电路)的设计中。将SM4算法用Verilog实现,意味着可以将其嵌入到硬件中,以硬件的方式提供加密和解密功能。这种实现方式的优点在于执行速度快,效率高,而且硬件实现的算法难以被逆向工程,从而提高了加密过程的安全性。 本资源集合提供了SM4算法在Verilog上的完整实现,包括加密和解密功能。它不仅包含Verilog代码,还提供了参考软件代码,帮助开发者更好地理解算法原理,并实现从软件到硬件的平滑过渡。参考软件代码的提供,意味着开发者无需依赖特定的加密库,从而降低了开发难度和成本。 视频教程是辅助学习的重要工具,通过视频教程,开发者可以看到SM4算法的具体实现过程,以及如何在Vivado工程中部署和运行。Vivado是Xilinx公司推出的一款集成设计环境,它支持从设计输入到设备配置的整个过程,是进行FPGA设计不可或缺的工具之一。通过视频教程,即使是没有Verilog设计经验的开发者,也能够快速上手,理解和实现SM4算法的硬件设计。 此外,该资源集合还提供了Vivado工程文件,这意味着开发者可以直接在Vivado环境中打开、修改和运行SM4算法的设计。这样的设计不仅适用于学习和教学,也适用于实际的工程项目,特别是在需要高安全性的通信系统中。 前端标签在这里可能指的是与用户直接交互的界面或接口,这里特指开发者通过软件界面与Verilog代码进行交互,实现SM4算法的加密解密功能。 这套资源集合为开发者提供了一套完整的SM4算法的Verilog实现方案,从基础的算法描述到实际的工程应用,为需要进行加密技术开发的工程师提供了一个很好的起点。通过使用这些资源,开发者不仅能够学习SM4算法的工作原理,还能够掌握如何将其应用于实际的硬件设计中,大大提升了项目的安全性和效率。
2025-08-06 10:24:46 2.45MB
1
/* //引脚说明: CLK_IN -- 外部晶振4.096MHz输入 RESRT -- FPGA给ADS1281的发出的复位信号,至少拉低2/4.096MHz SYNC -- FPGA控制ADS1281的同步信号 DRDY -- ADS1281给FPGA的数据就绪信号,可由SYNC引脚控制多片ADS1281的DRDY信号同步 DIN-- FPGA给ADS1281发送控制命令 DOUT-- FPGA从ADS1281中读出来最终转换后的数据 SCLK--FPGA通过CLK_IN控制SCLK信号,提供SPI通信的时钟信号,暂定为4.096/8MHz */
2025-08-04 19:08:17 18KB verliog zynq7020
1
内容概要:本文详细介绍了一个开源的1553B IP核的Verilog实现,涵盖BC(总线控制器)、RT(远程终端)和BM(总线监控)三种模式。该IP核支持Xilinx、Altera和Actel三家主流FPGA厂商的设备,提供了详细的代码示例和移植指南。文章深入探讨了各个模块的核心实现,如消息调度状态机、地址过滤、跨时钟域处理等,并附带了完整的demo工程和测试平台。此外,文中还介绍了优化设计,如参数化配置、双口FIFO、曼彻斯特编码等,确保高可靠性和高效性能。 适合人群:熟悉FPGA开发的工程师和技术爱好者,尤其是那些希望深入了解1553B协议实现的人群。 使用场景及目标:适用于需要在FPGA平台上实现1553B协议的应用场景,如航空航天、军事通信等领域。目标是提供一个易于移植、高性能、可靠的1553B IP核解决方案。 其他说明:文档中包含了丰富的代码片段、配置示例和调试技巧,帮助开发者快速上手并解决实际问题。
2025-08-04 15:00:56 3.82MB FPGA Verilog
1
Verilog驱动:LMX系列芯片任意频率可配置,适用于204B接口的FPGA开发应用,Verilog驱动的灵活配置:lmx2572至lmk04828的204B接口FPGA开发应用,任意频率适用,lmx2572 lmx2594 lmx2595 lmk04828的Verilog驱动可配置任意频率,适用于204B接口,FPGA开发 ,Lmx2572; Lmx2594; Lmx2595; Lmk04828; Verilog驱动; 任意频率; 204B接口; FPGA开发。,多频可配置Verilog驱动,适用于204B接口的FPGA开发
2025-08-01 17:23:33 4.13MB 正则表达式
1
基于FPGA 实现USART(universal synchronous asynchronous receiver and transmitter)同步串口控制器-主机。并带有仿真激励,可以模拟一帧数据发送。同步串口参数如表1-1所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子系统中,FPGA(现场可编程门阵列)是一种常用的高度灵活的数字逻辑设备。它允许设计者在硬件层面上实现各种复杂的逻辑功能,进而实现特定的电子系统。在诸多应用中,FPGA在通信接口控制器的实现方面尤为突出,因为它们可以高速执行复杂的协议转换和数据处理任务。USART(通用同步/异步接收/发送器)是一种广泛使用的串行通信接口,它能够以同步或异步的方式发送和接收数据。SSI(同步串行接口)是另一种用于短距离通信的串行接口,主要用在电子系统内部设备之间的数据传输,比如模拟/数字转换器和数字/模拟转换器等。 本文档涉及的主题是“基于FPGA实现同步串口控制器-主机”,这表明该控制器是同步类型的USART接口。文档详细说明了该控制器的实现是基于Xilinx的Vivado设计套件,版本为2018.3。Vivado是Xilinx公司推出的一款先进的设计工具,它支持FPGA的设计、仿真、实现和分析。在FPGA开发中,Verilog HDL(硬件描述语言)是一种常用的编程语言,用于描述和实现数字电路和系统的功能。文档中还提到了使用的FPGA器件型号为xc7a100tfgg484,这是Xilinx公司的一款中等规模的FPGA,具备丰富的资源和较高的处理速度,适用于实现较为复杂的同步串口控制器。 USART同步串口控制器-主机的设计和实现,意味着这个控制器能够作为主机来控制USART通信协议中的数据传输过程。它能够管理数据帧的发送、接收、格式化以及协议要求的其他功能。在同步模式下,数据传输过程中,时钟信号会从发送方传到接收方,确保两者之间能够同步工作,这对于保持数据的准确性和可靠性非常关键。该控制器还配备了仿真激励,意味着它能够模拟一帧数据的发送过程,这是硬件设计验证的重要环节,可以在不依赖实际硬件的情况下测试和验证控制器的功能和性能。 这种控制器的实现对通信、数据采集和工业控制系统等领域的应用具有重要意义。例如,在工业自动化控制系统中,这样的同步串口控制器-主机能够实现与传感器、执行器等外围设备的高效通信,从而提升整个系统的响应速度和稳定性。在通信领域,它能够作为主机与其他设备进行数据交换,实现更加快速和准确的数据传输。 此外,由于FPGA的可编程特性,该同步串口控制器在设计完成后还可以根据实际需要进行修改和升级,这为系统提供了极大的灵活性。随着技术的发展,未来的FPGA可能会集成更多的功能,进一步简化通信控制器的设计和实现,提高系统的性能和效率。
2025-07-31 20:15:33 7.91MB verilog
1
"FPGA快速入门:Verilog语言基础" 本资源摘要信息将为读者提供FPGA快速入门的Verilog语言基础知识,涵盖HDL简介、Verilog和VHDL的区别、学习HDL的方法等方面的内容。 一、HDL简介 HDL全称为Hardware Description Language,中文名为硬件描述语言。它的主要作用是描述FPGA/CPLD内部逻辑门的工作状态,实现一定电路。随着EDA技术的发展,使用硬件语言设计PLD/FPGA已经成为一种趋势。目前,硬件描述语言有VHDL、Verilog、Superlog、System C、Cynlib C++、C Level等多种语言,每种语言都有其优势,根据业界应用而定。 二、Verilog和VHDL的区别 Verilog和VHDL是当前两种主要的硬件描述语言,区别如下: 1. VHDL发展的较早,语法严格,而Verilog HDL是在C语言的基础上发展起来的一种硬件描述语言,语法较自由。 2. VHDL的书写规则比Verilog烦琐一些,但Verilog自由的语法也容易让少数初学者出错。 3. 国内电子专业很多会在本科阶段教授VHDL,但社会上Verilog应用的较多,这给初学者带来了一定的苦难。 三、学习HDL的方法 学习HDL的方法可以从以下几个方面入手: 1. 找一个不错的书,看一遍,抄几个例程,玩玩流水灯(或者说看完本书的例程),便能很快入门。 2. 在线中文网站http://www.fpga.com.cn/hdl.htm提供了丰富的HDL资源,包括教程、例程、论坛等。 3. 由于Verilog和VHDL都属于类C语言,因此学过C语言的人会很快入门。 本资源摘要信息为读者提供了FPGA快速入门的Verilog语言基础知识,包括HDL简介、Verilog和VHDL的区别、学习HDL的方法等方面的内容,为读者提供了一个系统的学习指南。
1
原创,摸索了一整天,解决了官方verilog语言支持包的诸多问题:某些语法不能识别,变量不能高亮不能跳转,某些关键字不高亮,完美支持verilog。 至于sourceinsight中如何使用这个文件,可以在网上很容易搜到。
2025-07-30 18:09:04 10KB 编程语言
1