针对无线传感器网络中节点配置问题,目前已提出很多种不同的算法。这些算法的基本思想大都是把传感器节点分为不同的覆盖集,使得其中每个覆盖集能够监控到所有的目标。 本篇论文针对一个新颖,高效的覆盖算法,分析了该算法的设计原理,在此基础上作了改进,并将其实现,对不同情况下该算法所呈现的结果进行了讨论。该算法的特点在于通过一个成本函数来选择覆盖集里的传感器,成本函数的参数包括三个因素:传感器监控目标的能力、与较难监控目标的联系及传感器的剩余电池寿命。本文利用三个权重来表示这三个因素,探索了在三个因素发生变化时,该算法所产生的不同结果,得出通过合理控制三个权重的值,可以得到符合于实际情况的最佳结果,从而达到延长无线传感器网络寿命的目的。 1. 引言 无线传感器网络(WSN, Wireless Sensor Networks)是由大量部署在特定区域内的小型设备——传感器节点组成,这些节点具有数据采集、处理和传输能力。WSN广泛应用于环境监测、军事侦察、健康监护等多个领域。然而,由于节点资源有限,特别是能源有限,如何有效地利用节点进行目标覆盖,确保网络的持续稳定运行,是WSN研究中的关键问题。本文关注的是基于覆盖集的WSN覆盖率算法,旨在通过优化节点分配策略,提高网络覆盖效率,延长网络寿命。 1.1 研究背景 随着物联网技术的发展,WSN的应用越来越广泛。然而,由于节点的分布不均和能量限制,网络覆盖率成为一个挑战。传统的随机部署策略往往导致覆盖不全面或资源浪费。因此,设计一种能动态调整覆盖策略的算法,使每个目标都能被至少一个传感器节点有效监控,成为WSN研究的热点。 1.2 研究意义 优化WSN的覆盖率不仅可以提高数据采集的准确性和可靠性,还能减少不必要的能量消耗,延长网络生命周期。通过智能的覆盖算法,可以降低节点的部署密度,节省硬件成本,同时保持服务的质量。 1.3 研究现状 现有的覆盖算法主要分为静态和动态两类。静态算法在部署初期确定节点位置,难以适应环境变化;动态算法则根据环境和网络状态实时调整,更适应实际应用。本文研究的是一种新型动态覆盖算法,它以覆盖集为基础,通过成本函数来选择最佳传感器节点。 2. 问题模型 2.1 覆盖集介绍 覆盖集是WSN覆盖问题的核心概念,它是一组传感器节点,它们协同工作,共同覆盖整个监控区域。每个覆盖集应保证区域内所有目标的覆盖,以避免盲点。 2.2 点覆盖及面覆盖 点覆盖是指每个传感器节点仅需覆盖其周围一小片区域,而面覆盖则要求节点能覆盖更大的区域。本文算法兼顾点覆盖和面覆盖,以实现全方位的有效监控。 3. 算法设计原理 3.1 参数 本文提出的算法引入了三个关键参数:传感器的监控能力、与难监控目标的联系以及传感器的剩余电池寿命。这三者通过权重系数量化,形成成本函数,用于指导节点的选择。监控能力反映了节点的感知范围和精度,与难监控目标的联系度则考虑了某些特定目标的重要性,剩余电池寿命关乎节点的生存时间。 3.2 算法流程 根据节点的位置和覆盖范围划分覆盖集;然后,计算每个节点的成本函数,选取成本最低的节点进入覆盖集;不断迭代优化覆盖集,直到所有目标都被有效覆盖。 4. 改进与实现 对原算法进行改进,引入动态调整权重的机制,使算法能更好地适应环境变化。通过模拟实验,探讨不同权重设置对算法性能的影响,找出最佳的权重组合,以实现最优的覆盖效果和网络寿命。 5. 结果分析 通过对多种场景的仿真,本文深入分析了算法的性能,包括覆盖率、能源效率和网络生存时间,验证了改进算法的有效性和优越性。 基于覆盖集的WSN覆盖率算法通过综合考虑多种因素,实现了高效且节能的目标覆盖。通过合理的参数调整和优化,可以显著提升WSN的工作效能,为WSN的实用化提供了理论和技术支持。未来的研究方向可能包括进一步优化成本函数,考虑更多实际因素,以及将算法应用于更复杂的网络环境中。
1
【优化覆盖】基于matlab蜣螂算法DBO求解无线传感器WSN覆盖优化问题【含Matlab源码 3567期】.mp4
2025-04-23 20:45:37 4.42MB
1
针对无线传感器网络分区在恢复连通后仍然容错不足的问题,提出斯坦纳树和凸多边形的分区双连通恢复方法.首先,以距离为依据选取现有叶子节点来促使少数未连通的离散节点统一成区;然后,将分区抽象成点后枚举出所有的非退化型四边形,进而将计算得到的四边形中的两个斯坦纳点与4个顶点连接构造斯坦纳边部署中继节点,使分区实现单连通;最后,利用格雷厄姆凸壳算法选取抽象点中的凸壳顶点连接,形成凸多边形实现分区的双连通,并对第2轮连通路径上的中继节点实施休眠唤醒机制.在保证关键节点二次失效不会使网络再次瘫痪的基础上,简化网络结构并降低数据通信延迟.通过仿真,将所提出方案与利用最小斯坦纳树优化中继节点布局的分布式算法(DORMS)和1C-SpriderWeb算法进行对比,对比结果表明所提出方案可减少中继节点的部署数量,延长网络寿命.
2024-10-31 11:11:28 1.24MB
1
延长网络生存周期是WSN的核心问题之一.为均衡网络能耗,有效延长网络生存周期,提出一种保证区域能耗均衡的非均匀多跳分簇路由算法.通过对监测区域的等间距环形划分和等夹角扇形划分,得到同环簇大小相等、不同环簇大小由外到里依次递减的非均匀分簇方案,保证网络能耗效率最优.在簇头选取阶段,通过与距离相关的通信代价评价函数在每个子区域选择最合适的节点作为簇头,减少网络局部能耗.仿真结果表明了所提出算法的有效性.
2024-08-07 08:43:33 289KB
1
提出了一种将有线工业以太网和WSN有机结合的矿井监控与应急通信系统,结合该系统的应用要求,设计了一种基于分层的工作面路由协议(LRWF,Layer-based Routing for Working Face)。LRWF利用分簇的思想,将工作面节点按照跳数分层后,根据各层的不同负载形成不同规模的簇以便均衡网络能量,之后以簇首间时变的传输延时、节点剩余能量和传输能耗构建的复合指标选取路径,实现簇间数据的多跳转发。OMNET++仿真实验结果表明,LRWF与现有的矿井WSN路由协议相比,具有较低延时和更好的能量有效性,更适合于矿井环境。
2024-07-14 13:48:08 317KB 路由协议
1
% DV-Hop算法 % BorderLength-----正方形区域的边长,单位:m % NodeAmount-------网络节点的个数 % BeaconAmount---信标节点数 % Sxy--------------用于存储节点的序号,横坐标,纵坐标的矩阵
2024-05-04 21:57:15 18KB MATLAB
1
【优化覆盖】基于matlab飞蛾扑火算法和改进的飞蛾扑火算法求解WSN覆盖优化问题【含Matlab源码 3633期】.mp4
2024-04-25 19:59:22 4.45MB
1
环境条件中的温度和湿度指标是许多工业场合的重要参数,研制可靠且实用的 温湿度监测系统显得非常重要。通常,采用有线网络实现温湿度监测,具有布线麻烦、 设备随意移动性不强等缺点。现有的无线网络系统,具有网络不稳定,传输成本高 等缺点。无线传感器网络(WSN,WirelesSSenso:NetworkS)具有自组织、可快速 部署、屏蔽性强、无人值守等优点。随着射频技术、集成电路技术的发展,无线通信 功能的实现越来越容易,数据传输速率也越来越快,并且逐渐达到可以与有线网络 相媲美的水平。本文提出的基于WSN技术的无线温湿度监测的方案,不必铺设电缆, 可以节省费用和时间。而且,改变温湿度传感器节点测量位置和增加或减少传感器 节点数目都非常方便。设计应用于温湿度的无线传感器网络在需要测量的部位放置 传感器节点,由监测中心对网络采集的数据统一管理和分析。该无线传感器网络将 温湿度数据传输到WSN基站,再通过无线(宽带)传输发送到数据中心主机,具有 快速展开、稳定可靠、可维护性好等特点。可以预计,WSN为人类带来了不可估量 的好处。
1
作者:zhouyuanzhi 作品概述 农作物的生长状况与其周边环境是息息相关的,对农业环境进行实时监控,及时调整有关环境参数,能够有力促进农作物增产增收。基于WSN的农作物环境监测系统将结合现代生态农业技术、现代无线传感技术、水肥药一体化技术等先进技术,来采集、传输、存储、查询并分析农作物的环境信息,为农业生产提供科学指导。 开发环境 硬件:STM32F407,CC2530,Fibocom L610,BH1750光照强度传感器,DHT11温湿度传感器,土壤PH传感器,土壤温湿度氮磷钾传感器。 RT-Thread版本:RT-Thread Nano 3.1.3 开发工具及版本:MDK 5.27,STM32CubeMx RT-Thread使用情况概述 内核部分:调度器,信号量,线程。 调度器:创建多个线程来实现不同的工作。 线程:uart2_rx_thread_entry和led_thread_entry uart2_rx_thread_entry线程接收到串口2中断回调函数释放的信号量后,对数据进行整理并上传至阿里云;led_thread_entry线程使LED间隔1秒闪烁,提示系统正在运行。 系统硬件介绍 系统由终端节点、路由器节点、协调器节点、STM32F407通讯网关、云服务器四部分组成。终端节点以CC2530为核心通过传感器采集空气温湿度、光照强度、土壤温湿度、土壤氮磷钾含量以及土壤PH值数据信息并通过ZigBee协议传输数据到路由器,再经路由器转发至协调器,协调器接收到数据后通过串口把数据转发给STM32F407通讯网关,STM32F407通讯网关完成数据汇总,解析,打包,在LCD上显示采集到数据,并通过GPRS上传数据至阿里云IOT平台,阿里云IOT平台将数据包通过AMQP服务端订阅转发到智慧农业系统。系统整体结构图如图所示。 系统软件介绍 硬件端采集到所有环境数据后,按照协议将所有数据封装成包。并将这些数据包上传到阿里云IOT平台。上传到服务器时采用的协议是MQTT协议;阿里云IOT平台将数据包通过AMQP服务端订阅转发到智慧农业系统的后端服务器;智慧农业系统的后端服务器按照规则完成数据包的解析,并将解析出的环境数据存入MySql数据库中;后端将数据从数据库中取出发送到前端并在网页上显示所有环境数据。 演示效果 采集终端: 路由器和协调器: 网关: 数据采集和上传: 代码地址(附件为代码地址,下载后打开可见)
2024-03-22 15:19:56 1.3MB rt-thread 电路方案
1
【优化布局】基本蚁狮算法在WSN节点部署中的应用matlab源码.zip
2023-04-15 13:28:58 1.26MB
1