标题中的“机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言”指的是在编程领域中,一种用于解决路径规划问题的高级算法——双向A*(Bidirectional A*)的实现。这种算法是A*(A-star)算法的一个扩展,适用于机器人导航、游戏开发、地图路径规划等多种场景。本文将详细探讨双向A*算法的原理、优势以及在C++、Python和Matlab三种不同编程语言中的实现方法。 双向A*算法是在单向A*的基础上发展而来的,其核心思想是同时从起点和终点开始搜索,两个方向的搜索会逐渐接近直到相遇,从而大大减少了搜索的步数和时间。相较于单向A*,它能更快地找到最优路径,特别是在大型复杂环境中。 我们需要理解A*算法的基础。A*算法是一种启发式搜索算法,结合了Dijkstra算法的最短路径寻找和最佳优先搜索的特性。它使用一个评估函数f(n) = g(n) + h(n),其中g(n)是从起点到当前节点的实际成本,h(n)是从当前节点到目标节点的预计成本。A*算法会优先考虑具有最低f值的节点进行扩展。 双向A*算法在实现时,需要维护两个开放列表,一个从起点开始,另一个从终点开始。每个列表都会更新其对应的g值,并与对方列表中的节点进行比较,如果发现有相交的节点,则可以停止搜索并组合路径。为了提高效率,需要选择合适的启发式函数h(n),通常使用曼哈顿距离或欧几里得距离。 在C++中实现双向A*,你需要熟悉STL库,如队列和优先级队列,用于存储和处理节点。同时,还需要定义数据结构来表示节点和边,以及计算代价和启发式函数的方法。 Python实现则相对简洁,可以利用内置的数据结构和第三方库如`heapq`来进行优先级队列操作。Python的动态类型和简洁语法使得代码更易读写。 Matlab作为一门科学计算语言,也支持实现双向A*。在Matlab中,你可以使用`heappush`和`heappop`函数来实现优先级队列,同时Matlab强大的矩阵运算能力有助于优化计算过程。 在实现过程中,需要注意的关键点包括: 1. 启发式函数的选择和计算。 2. 有效存储和更新节点信息。 3. 正确处理开放列表和关闭列表。 4. 判断相遇并组合路径的逻辑。 双向A*算法是一种高效的路径规划工具,适合在多种编程环境中实现。理解其原理并熟练掌握在C++、Python或Matlab中的实现方法,对提升编程技能和解决实际问题大有裨益。通过阅读提供的链接文章(https://blog.csdn.net/weixin_44584198/article/details/137058282),可以获取更多关于双向A*算法的详细信息和示例代码,进一步加深理解和实践。
2025-05-08 14:49:03 168.65MB python matlab
1
双树RRT算法,地图使用bmp文件,可以自己指定或者使用画图软件编写
2023-04-04 09:51:15 203KB matlab bidirectionalRRT pathplanning
1
RRT基本算法仿真,基于三维环境仿真,可更改障碍区
2022-10-26 12:08:25 203KB 路径规划 三维障碍 RRT RRT算法
1
NLP领域取得最重大突破!谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩。毋庸置疑,BERT模型开启了NLP的新时代!
2022-05-26 23:37:46 717KB BERT
1
LSTM用于人类活动识别 使用智能手机传感器数据集(腰部连接的手机)基于LSTM的人类活动识别。 将运动类型分为以下六类: 步行, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 坐下 常设, 铺设。 数据集 可以从下载数据集 点击此以观看有关如何收集数据的视频 通过应用噪声滤波器对传感器信号(加速度计和陀螺仪)进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中进行采样。 使用巴特沃斯低通滤波器将具有重力和人体运动成分的传感器加速度信号分离为人体加速度和重力。 假定重力仅具有低频分量,因此使用了具有0.3 Hz截止频率的滤波器。 模型 在此仓库中,我们采用了两层堆叠的基本LSTM,几乎使用了原始数据:只有重力效应已从加速度计中滤出,作为另一个3D功能的预处理步骤,以作为帮助学习的输入。 用法 安装TensorFlow r
2022-04-06 10:32:15 113.18MB JupyterNotebook
1
上传了 2017a 到 2014a 的 Matlab 版本。 该文件具有 DC/DC 双向转换器,无论来自 MG 的电流量如何,都能将 DC 总线电压保持在所需值。 如果您将使用该模型,请参考 Simulink 文件中提到的论文。 谢谢你。
2021-10-05 16:34:20 195KB matlab
1
深度学习实验室 字符测试。 seq2seq测试。 word2vec测试。 交叉熵检验。 双向rnn测试。 图片上的卷积运算。 图片上的合并操作。 cnn可视化的颤抖。 InceptionV3模型。 转移学习。
2021-10-05 12:33:19 18.85MB word2vec rnn seq2seq bidirectional-rnn
1
该程序是基于文献“P. W. M. Tsang and T.-C. Poon, “Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion,” Opt. Express 21(20), 23680–23686 (2013).”所提方法编写的,用于计算全息中的相位恢复问题。采用该算法可快速将复振幅全息转化为纯相位全息,而无需迭代计算
1
介绍了两个用于双向微分方程和离散系统的构造性广义混沌同步(GCS)定理。 使用这两个定理,可以构造新的混沌系统,使系统变量位于GCS中。 给出了五个例子来说明理论结果的有效性。
2021-02-22 18:06:42 1.74MB generalized chaos synchronization; bidirectional
1
从起始点和末端点同时搜索的RRT算法,可以快速有效找到避障路径,在复杂地图环境中任然有效。
2019-12-21 18:53:59 195KB 双向RRT避障
1