Matlab R2019a与Carsim 2019.1五次多项式换道轨迹规划与MPC跟踪控制模型解读,五次多项式道轨迹规划+MPC轨迹跟踪控制simulink模型(有说明文档) 版本:Matlab R2019a Carsim2019.1 模型采用五次多项式道轨迹,考虑道过程中的边界条件约束和侧向加速度约束,可以满足不同侧向加速度下的道轨迹规划 采用MPC模型预测控制对道轨迹进行跟随,经验证轨迹跟踪效果良好 ,核心关键词:五次多项式换道轨迹规划; MPC轨迹跟踪控制; Simulink模型; 边界条件约束; 侧向加速度约束; 轨迹跟踪效果。,"Matlab R2019a下五次多项式换道轨迹规划与MPC跟踪控制的Simulink模型研究"
2026-01-30 10:19:21 216KB 哈希算法
1
内容概要:本文详细探讨了平行泊车和垂直泊车的路径跟踪问题,重点介绍了纯跟踪算法和模型预测算法的应用。文中不仅提供了MATLAB代码实现,还包括Simulink与CarSim的联合仿真,用于验证算法的有效性。具体来说,纯跟踪算法基于几何原理,通过分析车辆当前位置和目标路径的离散点信息,计算出下一步的行驶方向和位置;而模型预测算法(MPC)则通过构建车辆动力学模型,预测未来的车辆行为,优化行驶路径。此外,文章还涉及了泊车环境的设置,如停车场、障碍物等,以模拟不同的泊车场景。 适用人群:汽车工程专业学生、自动驾驶研究人员、车辆控制系统开发者。 使用场景及目标:适用于研究和开发自动泊车系统的技术人员,旨在提高泊车路径跟踪的精度和效率,推动自动驾驶技术的发展。 其他说明:本文提供的MATLAB代码和仿真工具可以帮助读者更好地理解和实践泊车路径跟踪算法。
2026-01-22 23:16:39 661KB
1
CarSim与TruckSim在自动泊车中的场景建模:探究30度斜停车位设计与实现,CarSim与TruckSim联合建模:自动泊车场景中的斜停车位建模,解析与实践应用,carsim trucksim 自动泊车场景建模 30度斜停车位场景 ,核心关键词:carsim; trucksim; 自动泊车场景建模; 30度斜停车位场景。,自动泊车场景建模:基于CarSim与TruckSim的30度斜停车位场景研究 在现代智能交通系统中,自动泊车技术作为自动驾驶技术的一个重要分支,受到了广泛关注和研究。特别是在交通拥堵日益严重的现代社会,自动泊车技术的发展不仅能够提高车辆的停车效率,还能缓解因停车位紧张而引起的交通压力。本文将探讨基于CarSim与TruckSim两种模拟软件在自动泊车场景中设计和实现30度斜停车位模型的过程和应用。 CarSim与TruckSim是两款广泛应用于汽车和重型车辆动力学模拟的专业软件。它们能够提供精确的车辆模型、环境模型以及驾驶员模型,使得开发者能够模拟和验证各种复杂的驾驶情况。在自动泊车的场景建模中,这些模拟软件可以帮助工程师快速设计出满足实际需求的虚拟环境,测试自动泊车系统在不同条件下的性能表现。 30度斜停车位是城市停车场中常见的一种车位类型,由于其占用空间小、利用率高,成为了设计自动泊车系统时需要考虑的场景之一。然而,由于斜停车位的角度和空间限制,对于自动泊车系统的算法和控制策略提出了更高的要求。因此,如何在CarSim与TruckSim中准确模拟30度斜停车位场景,成为了实现自动泊车的关键问题之一。 在具体的操作中,首先要对30度斜停车位的环境参数进行准确建模,包括车位的尺寸、位置以及与其他车位的距离等。接着,需要根据目标车型的特性,设定车辆的物理属性和动力学模型,如车长、车宽、转向系统以及制动系统等。然后,可以在CarSim与TruckSim中导入这些模型,并利用软件提供的仿真工具,对自动泊车系统进行测试和优化。 仿真测试可以包括不同的泊车策略,如基于图像识别的车位搜索、基于超声波传感器的泊车辅助、以及基于机器学习的泊车路径规划等。通过模拟不同天气条件和交通场景,评估自动泊车系统在各种情况下的可靠性和稳定性。此外,软件还能够记录和分析车辆在泊车过程中的动态数据,如车辆运动轨迹、所需时间、以及可能发生的碰撞等,为系统的进一步改进提供数据支持。 实际应用中,自动泊车系统的设计和实现不仅需要考虑技术的可行性,还要充分考虑用户的需求和使用习惯。例如,为了确保用户的安全和方便,系统应该能够在有限的空间内实现快速、准确的泊车,并且在泊车过程中能够给出清晰的指示信息。 自动泊车场景建模是自动驾驶技术中的一项重要工作,30度斜停车位的模拟更是其中的关键环节。通过CarSim与TruckSim等专业模拟软件,研究人员能够高效地进行场景建模和系统测试,推动自动泊车技术的发展和应用。随着技术的不断进步和用户需求的变化,自动泊车场景建模将更加精细化、多样化,为智能驾驶技术的发展带来新的可能性。
2026-01-22 18:53:09 8.94MB
1
在IT行业中,自动泊车是一项重要的智能驾驶技术,尤其在汽车和卡车模拟软件如Carsim和Trucksim中,这项功能对于车辆安全和便捷性有着显著的影响。本场景聚焦于垂直入库的自动泊车,这是一个常见且具有挑战性的停车情境。 Carsim和Trucksim是两个专业的车辆动力学模拟软件,广泛应用于汽车研发和测试。Carsim主要用于轿车和小型车辆的仿真,而Trucksim则专门针对大型货车和商用车辆进行模拟。它们提供了详尽的车辆模型,包括动力系统、悬挂、转向、制动等,并能模拟各种道路条件和驾驶操作,其中就包括自动泊车功能。 自动泊车系统通常由传感器、控制器和执行机构组成。在垂直入库的场景中,传感器,如雷达、超声波或摄像头,会检测停车位的边界,然后将这些数据传输给车辆的中央控制器。控制器通过算法计算出最佳的入库路径和转向角度,同时考虑到车辆尺寸和障碍物的距离。执行机构,包括电动助力转向系统(EPS)和刹车系统,按照控制器的指令精确控制车辆的动作,实现平稳、准确的泊车。 在提供的压缩包文件中,"自动泊车场景垂直入库场景垂直泊车.txt"可能是详细描述了该自动泊车过程的文本文件,可能包含了算法的步骤、系统工作流程等技术细节。"2.jpg"和"3.jpg"可能为相关操作界面截图或实际模拟结果的图片,帮助用户理解系统的可视化表现。"自动泊车场景垂直入.html"可能是一个网页文档,用于展示更丰富的图文信息,包括系统介绍、操作指南或模拟视频。"1.jpg"可能是另一个与自动泊车相关的图像,可能是车辆模型图或者系统工作原理的示意图。 自动泊车技术不仅提升了驾驶者的便利性,还降低了潜在的碰撞风险。随着自动驾驶技术的发展,这类模拟软件在验证和优化自动泊车算法方面的作用日益凸显。通过 Carsim 和 Trucksim,工程师可以进行无数次的虚拟测试,不断调整和优化自动泊车策略,以实现更高效、安全的泊车解决方案。未来,自动泊车系统可能会结合更多先进的传感器技术和AI算法,进一步提升其智能化水平。
2026-01-22 18:49:04 2.8MB
1
电动汽车再生制动系统的Simulink与Carsim联合仿真模型。首先,通过搭建模型架构并设置关键参数如SOC阈值,确保电池安全运行。接着,深入探讨了制动力分配算法,特别是能量回收的跷跷板逻辑,包括SOC过高时的线性衰减、车速阈值设定以及坡度补偿因子的应用。此外,还提到了Carsim端的信号映射配置,强调了坡道工况处理的重要性。为了便于调试,推荐使用Simulink的Dashboard模块进行实时参数调整,并通过能量流桑基图直观展示制动能量分配情况。最后,指出实际应用中还需考虑ESP介入和电池温度保护等因素。 适合人群:从事电动汽车研究的技术人员、高校相关专业师生、对汽车工程感兴趣的科研工作者。 使用场景及目标:①用于验证和优化电动汽车再生制动系统的性能;②帮助研究人员更好地理解能量回收机制及其影响因素;③为后续开发提供理论依据和技术支持。 其他说明:文中提供了详细的MATLAB代码片段,方便读者理解和复现实验过程。同时提醒读者,在实际应用中还需要综合考虑更多复杂因素。
2026-01-04 13:43:00 327KB
1
内容概要:本文深入探讨了利用Perscan、Simulink和CarSim进行自动驾驶避障模型的设计与实现。首先介绍了如何在Perscan中创建动态障碍物,如蛇形走位的NPC车辆,通过调整参数模拟真实交通状况。接着详细讲解了Simulink中用于避障决策的控制逻辑,特别是模型预测控制(MPC)的应用,包括计算安全距离、选择最优路径以及紧急制动的策略。最后讨论了CarSim对避障效果的物理验证,确保算法符合车辆动力学特性,并解决了仿真过程中出现的时间同步问题。文中还分享了一些实践经验,强调了高精度时间和物理限制对于成功避障的重要性。 适合人群:从事自动驾驶技术研发的专业人士,尤其是对避障算法感兴趣的工程师和技术研究人员。 使用场景及目标:适用于希望深入了解自动驾驶避障系统的开发者,旨在帮助他们掌握从场景构建、算法设计到物理验证的完整流程,提高避障系统的可靠性和安全性。 其他说明:文章不仅提供了理论指导,还包括具体的代码示例,便于读者理解和实践。同时提醒读者注意仿真与现实之间的差距,强调了测试和优化的重要性。
2025-12-29 19:23:21 2.25MB
1
内容概要:本文介绍了利用Carsim与Simulink联合仿真平台构建的线控制动系统(BBW-EMB)模型。该模型实现了四个车轮的独立BLDCM三环PID闭环制动控制,能够高度还原真实的线控制动系统结构。文中详细解释了制动力分配机制、三环控制算法(电流环、速度环、位置环)的工作原理以及模型的扩展性和灵活性。此外,还展示了线控制动系统相较于传统液压制动的优势,特别是在紧急制动情况下的性能提升。 适用人群:汽车工程领域的研究人员和技术开发者,特别是关注线控制动系统设计与优化的专业人士。 使用场景及目标:适用于希望深入了解线控制动系统工作原理的研究人员,以及计划开发或改进线控制动系统的工程师。目标是提供一个可扩展的基础模型,便于进行进一步的功能定制和性能优化。 其他说明:模型已开源,支持用户根据自身需求添加如踏板力模拟、ABS功能集成等功能模块。同时提供了详细的MATLAB代码示例,帮助用户理解和修改现有控制逻辑。
2025-12-11 20:57:19 771KB
1
内容概要:本文详细介绍了如何利用CarSim和Simulink进行自动驾驶汽车的轨迹跟随、车道保持及横向控制的联合仿真。首先,通过配置CarSim中的车辆参数文件(cpar)并将其与Simulink连接,搭建了一个能够模拟车辆行驶行为的基础平台。接着,在Simulink中构建了轨迹生成器、MPC控制器以及PID控制器等关键组件,用于生成参考路径并计算所需的转向角度和其他控制指令。文中还提供了具体的代码片段,展示了如何实现正弦波形路径生成、模型预测控制的成本函数设计、PID控制器的参数调节方法等内容。此外,针对可能出现的问题,如仿真速度慢、控制不稳定等,给出了相应的解决方案和技术细节。 适合人群:从事自动驾驶研究的技术人员、高校相关专业师生、对车辆控制系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解自动驾驶车辆横向控制原理的研究人员,旨在帮助他们掌握CarSim与Simulink联合仿真的具体步骤,从而更好地应用于实际项目开发中。 其他说明:文章不仅涵盖了理论知识,还包括了许多实践经验分享,如参数选择、故障排查等,有助于提高读者的实际操作能力。
2025-12-10 19:08:10 290KB
1
内容概要:本文详细介绍了利用Carsim与Simulink联合仿真构建的线控制动系统BBW-EMB模型。该模型实现了四个车轮的独立BLDCM三环PID闭环制动控制,能够高度还原线控制动系统的实际运行情况。文中不仅展示了模型的具体结构和功能,还提供了核心控制代码,解释了电流环、速度环和位置环的作用机制。此外,文章讨论了制动力分配模块的设计思路以及如何进行个性化定制,如添加踏板力模块和集成ABS功能的可能性。最后,通过对比实验验证了线控制动系统相较于传统液压制动的优势。 适用人群:汽车工程领域的研究人员和技术开发者,尤其是对线控制动系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解线控制动系统工作原理的研究人员,以及计划开发或改进线控制动系统的工程师。目标是提供一个完整的理论和实践指导,帮助用户掌握线控制动系统的关键技术和应用场景。 其他说明:模型已在GitHub上开源,方便有兴趣的读者进一步研究和扩展。
2025-12-02 13:12:46 807KB
1
内容概要:本文详细介绍了如何利用CarSim和Simulink进行汽车ESP(电子稳定程序)系统的联合仿真建模。首先,文章解释了CarSim用于构建高精度整车动力学模型,包括设置关键参数如轮胎魔术公式、整车质量和求解步长等。接着,阐述了Simulink中ESP控制器的设计,特别是PID控制算法的具体实现及其优化技巧,如积分项抗饱和处理、制动力分配逻辑以及参数调整。此外,强调了两个软件之间的数据同步和交互,确保仿真过程中车辆行为的真实性和准确性。最后,展示了仿真结果的应用价值,特别是在极端驾驶条件下的性能评估。 适合人群:从事汽车电子控制系统研究的工程师和技术人员,尤其是对ESP系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解ESP系统工作原理的研究人员,帮助他们掌握CarSim和Simulink联合仿真的方法论,从而能够自行搭建并优化ESP仿真模型,提高车辆行驶安全性。 其他说明:文中提供了大量实用的技术细节和代码片段,有助于读者快速入门并深入理解ESP仿真建模的关键技术和常见问题解决方案。
2025-12-02 12:44:31 1.72MB 仿真建模
1