标题中的“cifar10、cifar100”指的是两个广泛用于计算机视觉研究的数据集。CIFAR-10和CIFAR-100是由Alex Krizhevsky创建的小型彩色图像数据集,是许多机器学习和深度学习算法的基准测试之一。 CIFAR-10数据集包含60,000个32x32像素的彩色图像,分为10个类别,每个类别有6,000张图像。这10个类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、船和卡车。其中50,000张图像用于训练,10,000张用于测试。这些图像在视觉上具有挑战性,因为它们包含各种各样的视图、姿势和光照条件。 CIFAR-100数据集与CIFAR-10类似,但包含100个类别,每个类别有600张图像。这些类别分为20个超级类别,每个超级类别包含5个相关的子类别。同样,CIFAR-100也分为50,000张训练图像和10,000张测试图像。 描述中提到的“python版本数据集打包下载”意味着提供的压缩包包含了Python语言可以使用的数据集格式。这意味着数据集已经被预处理为Python友好的格式,可能包含了numpy数组或Pandas DataFrame,方便数据加载和处理。此外,“更多版本下载(matlab、二进制)”表示还有其他版本的数据集,适用于MATLAB环境或原始的二进制格式。这些不同格式满足了不同编程语言和应用场景的需求。 “数据集详细介绍参考资源中的readme.html”表明压缩包内有一个readme.html文件,该文件通常会提供关于数据集的详细信息,如数据集的结构、如何加载和使用数据、数据预处理方法以及可能的限制或注意事项。 标签中的“数据集下载”和“计算机视觉”明确了这个资源是用于计算机视觉研究的数据集,而“分类算法”则提示这个数据集常被用来训练和评估各种图像分类模型,如支持向量机(SVM)、随机森林(RF)、卷积神经网络(CNN)等。 这个压缩包提供了CIFAR-10和CIFAR-100数据集的Python版本,适合进行计算机视觉领域的图像分类任务。它还提供了其他格式的下载选项,以及一个readme.html文件来详细解释数据集的使用。这个资源对于那些希望在小规模彩色图像识别上测试和开发新算法的研究者来说非常宝贵。
2025-10-12 12:21:24 323.77MB 数据集下载 计算机视觉 分类算法
1
因为tensorflow2.0的keras api需要从cifar官方下载速度太慢,并且代码会检查md5,所以特意整理出来分享,直接将其解压到 windows: C:/用户/"你的用户名"/.keras/datasets/ Linux: ~/.keras/datasets/ 就可以使用
2022-05-21 15:40:16 323.87MB cifar10 cifar100
1
人工智能 深度学习 cifar100 数据集
2022-04-08 17:06:44 141.76MB 人工智能 深度学习
1
基于pytorch的多种基础算法,对cifar100进行分类,代码完整
2022-03-31 00:46:22 43KB Cifar100分类;多种算法实现
这是pytorch初学者的游乐场,其中包含流行数据集上的预定义模型。 目前我们支持 mnist,svhn cifar10,cifar100 stl10 亚历克斯网 vgg16,vgg16_bn,vgg19,vgg19_bn resnet18,resnet34,resnet50,resnet101,resnet152 squeezenet_v0,squeezenet_v1 inception_v3 这是MNIST数据集的示例。 这将自动下载数据集和预先训练的模型。 import torch from torch.autograd import Variable from utee import selector model_raw, ds_fetcher, is_imagenet = selector.select('mnist') ds_val = ds_fetcher(b
1
CIFAR100 小图像分类数据集 50,000 张 32x32 彩色训练图像数据,以及 10,000 张测试图像数据,总共分为 100 个类别。 返回: 2 个元组: x_train, x_test: uint8 数组表示的 RGB 图像数据,尺寸为 (num_samples, 3, 32, 32) 或 (num_samples, 32, 32, 3),基于 image_data_format 后端设定的 channels_first 或 channels_last。 y_train, y_test: uint8 数组表示的类别标签,尺寸为 (num_samples,)。 参数: label_mode: "fine" 或者 "coarse"
2022-01-12 09:13:43 176.01MB cifar100 numpy tensorflow keras
1
CIFAR100 小图像分类数据集 50,000 张 32x32 彩色训练图像数据,以及 10,000 张测试图像数据,总共分为 100 个类别。 返回: 2 个元组: x_train, x_test: uint8 数组表示的 RGB 图像数据,尺寸为 (num_samples, 3, 32, 32) 或 (num_samples, 32, 32, 3),基于 image_data_format 后端设定的 channels_first 或 channels_last。 y_train, y_test: uint8 数组表示的类别标签,尺寸为 (num_samples,)。 参数: label_mode: "fine" 或者 "coarse"
2022-01-12 09:13:42 176.01MB cifar100 numpy tensorflow keras
1
CIFAR-100上的VGG-16 在CIFAR-100上训练的VGG网(具有batchnorm和dropout)。 您可以通过更改数据加载器类中的一行来轻松修改此代码以在CIFAR-10上进行训练。 在不增加数据的情况下达到约64%的准确性。 该数据集上的记录是75%。 我计划添加数据参数,以使性能达到最新水平。 重要提示-请将saves文件夹下载到项目目录中。 它包含权重 这是架构: 有用的链接
2021-10-26 17:59:11 7KB Python
1
pytorch训练cifar100测试单GPU效率代码,用于测试GPU效率,基于开源https://github.com/weiaicunzai/pytorch-cifar100
2021-08-26 20:06:00 161.8MB PyTorch GPU
1
皮托奇·西法尔100 pytorch在cifar100上练习 要求 这是我的实验资料 python3.6 pytorch1.6.0 + cu101 张量板2.2.2(可选) 用法 1.输入目录 $ cd pytorch-cifar100 2.数据集 我将使用来自torchvision的cifar100数据集,因为它更方便,但我还将示例代码保留了用于在数据集文件夹中编写您自己的数据集模块的示例,以作为人们不知道如何编写它的示例。 3.运行tensorbard(可选) 安装张量板 $ pip install tensorboard $ mkdir runs Run tensorboard
1