内容概要:本文介绍了一种基于YOLOv8改进的高精度红外小目标检测算法,主要创新点在于引入了SPD-Conv、Wasserstein Distance Loss和DynamicConv三种关键技术。SPD-Conv通过空间到深度变换保留更多小目标特征,Wasserstein Distance Loss提高了对小目标位置和尺寸差异的敏感度,DynamicConv则实现了卷积核的动态调整,增强了对不同特征模式的适应性。实验结果显示,改进后的算法在红外小目标检测任务中取得了显著提升,mAP从0.755提高到0.901,同时在其他小目标检测任务中也有良好表现。 适合人群:从事计算机视觉、目标检测研究的技术人员,尤其是对红外小目标检测感兴趣的开发者。 使用场景及目标:适用于需要高精度检测红外小目标的应用场景,如工业质检、无人机监控、卫星图像分析等。目标是提高小目标检测的准确性和召回率,降低误检率。 其他说明:文中提供了详细的代码实现和技术细节,帮助读者理解和复现实验结果。建议在实践中根据具体应用场景调整模型配置和参数设置。
2025-05-05 20:41:18 954KB
1
《PyTorch中的Spline卷积模块:torch_spline_conv》 在深度学习领域,PyTorch是一个广泛使用的开源框架,它提供了丰富的功能和模块,让开发者能够灵活地构建和训练复杂的神经网络模型。其中,torch_spline_conv是PyTorch的一个扩展库,专为卷积神经网络(CNN)引入了一种新的卷积方式——样条卷积。这个库的特定版本torch_spline_conv-1.2.1-cp36-cp36m-win_amd64.whl,是为Python 3.6编译且适用于Windows 64位系统的二进制包。 样条卷积是一种非线性的卷积操作,它的主要思想是通过样条插值来定义滤波器权重,以此提供更灵活的特征表示能力。相比于传统的线性卷积,样条卷积可以捕获更复杂的图像结构,特别是在处理具有连续性和非局部性的任务时,如图像恢复、图像超分辨率和视频分析等。 在安装torch_spline_conv之前,确保已正确安装了PyTorch的特定版本torch-1.6.0+cpu。这是为了保证库与PyTorch的兼容性,因为不同的PyTorch版本可能与特定的torch_spline_conv版本不兼容。安装PyTorch的命令通常可以通过pip进行,例如: ```bash pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html ``` 在确保PyTorch安装无误后,可以使用以下命令安装torch_spline_conv-1.2.1-cp36-cp36m-win_amd64.whl文件: ```bash pip install torch_spline_conv-1.2.1-cp36-cp36m-win_amd64.whl ``` 安装完成后,开发者可以在PyTorch项目中导入并使用torch_spline_conv库。例如,创建一个样条卷积层: ```python import torch from torch_spline_conv import SplineConv # 假设输入特征图的尺寸是(C_in, H, W),输出特征图的尺寸是(C_out, H, W) in_channels = 32 out_channels = 64 kernel_size = 3 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') spline_conv = SplineConv(in_channels, out_channels, kernel_size, device=device) ``` 这里,`SplineConv`函数接收输入特征通道数、输出特征通道数和卷积核大小作为参数,并可以选择在GPU上运行(如果可用)。一旦创建了样条卷积层,就可以像其他PyTorch层一样将其整合到神经网络模型中,参与前向传播过程。 样条卷积的优势在于其非线性特性,它允许网络更好地模拟现实世界中复杂的数据分布。同时,由于样条插值的数学特性,样条卷积可以实现平滑的过渡效果,这对于图像处理任务尤其有用。然而,需要注意的是,相比传统的线性卷积,样条卷积可能会增加计算复杂度和内存消耗,因此在实际应用时需要权衡性能和资源利用。 总结来说,torch_spline_conv是一个增强PyTorch卷积能力的库,其核心在于样条卷积这一非线性操作。通过正确安装和使用这个库,开发者可以构建更强大的CNN模型,以处理需要更精细特征表示的任务。在安装和使用过程中,务必遵循依赖关系,确保PyTorch版本与库的兼容性。
2024-09-02 17:17:41 131KB
1
pytorch yolov3 目标检测 yolov3-tiny.conv.15 yolov3 yolov3-tiny.conv.15 权重文件
2024-04-09 11:53:31 27.39MB yolov3-tiny.conv pytorch yolov3-t 目标检测
1
改进YOLOv5_v7 _ 用于低分辨率图像和小物体的新 CNN 模块SPD-Conv_迪菲赫尔曼的博客-CSDN博客.mhtml
2024-03-25 16:44:16 9.7MB
1
========dgk_lost_conv======== chinese conversation corpus 可以用作聊天机器人的训练语料 结果: dgk_shooter_z.conv 110MB 已分词 dgk_shooter_min.conv 按字分词 lost.conv 1.7MB fanzxl.conv 2.3MB fk24.conv 4.5MB haosys.conv 1.3MB juemds.conv 793KB laoyj.conv 1.5MB prisonb.conv 543KB 内部方法: asstosrt -s utf-8 ass ----asstosrt---->srt srt ----cvgen.py---->.conv 特别的shooter73g: 进入shooterwp, 解压缩mirror.x到rawbase下面 执行sel.sh 在跟目录下 fixco
2023-11-09 11:39:30 126.44MB Python
1
各种卷积计算性能对比(Conv,DwConv,GhostConv,PConv,DSConv,DCNV),包括推理时间,GFlops,FPS
2023-03-27 11:27:27 7.47MB 深度学习 AI 机器视觉
1
YOLO检测,训练自己的模型必备的预训练权重文件~官网太难下载了。。。当时慢得我想哭,当然,程序跑起来的喜悦也是无与伦比的。
2023-03-26 01:26:26 144.37MB YOLO预训练 初始卷积权重
1
No More Strided Convolutions or Pooling:A New CNN Building Block for Low-Resolution Images and Small Objects 无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块SPD-Conv 提出了一个名为SPD-Conv的新的CNN构建块,它完全消除了步长和池化操作,取而代之的是一个空间到深度卷积和一个无步长卷积。
2023-03-08 09:47:30 1.91MB paper
1
数据转换器 data converters matlab 弗朗哥.马洛贝蒂 随书matlab 程序 用于学习
2022-12-12 16:06:59 230KB 数据转换器  data conv
1
不使用'conv()'的矩阵方法进行线性卷积在这里我编写了通过矩阵方法进行线性线性卷积的代码。 它需要两个向量并对它们进行线性卷积。 我做了一个名为 shiftFTN 的函数(函数代码附在 zip 文件中的主 m 文件中)来将向量向右移动 1。
2022-11-28 16:14:35 2KB matlab
1