内容概要:本文介绍了一种基于多传感器多尺度一维卷积神经网络(MS-1DCNN)和改进Dempster-Shafer(DS)证据理论的轴承故障诊断系统。系统旨在通过并行处理来自四个传感器(三个振动传感器和一个声音传感器)的时序数据,提取多尺度故障特征,并通过智能融合机制实现对轴承故障的准确分类和不确定度估计。核心创新在于将MS-1DCNN的强大特征提取能力和DS证据理论在不确定性推理方面的优势相结合。系统采用两阶段训练策略,首先独立训练每个MS-1DCNN子网络,然后联合训练DS融合层,以应对数据集规模小而模型复杂的问题。报告详细描述了系统架构、数据规范、训练策略、结果评估与可视化等内容,并展示了该系统在提高故障诊断准确性和鲁棒性方面的优势。 适合人群:具备一定机器学习和深度学习基础,对故障诊断系统设计和实现感兴趣的工程师、研究人员和技术人员。 使用场景及目标:①适用于工业生产中旋转机械设备的故障检测与预防;②通过多传感器数据融合提高诊断的准确性和鲁棒性;③利用改进的DS证据理论处理不确定性和冲突信息,提供可靠的诊断结果和不确定度估计。 其他说明:该系统在设计上考虑了数据集较小的情况,采用了两阶段训练策略和数据增强技术,以防止过拟合并提高模型的泛化能力。未来的研究方向包括扩展到更多类型的传感器、探索更广泛的数据增强技术和合成数据生成方法,以增强模型在复杂真实环境中的诊断性能和可靠性。报告强调了可视化结果的重要性,包括损失与准确率曲线、混淆矩阵、t-SNE/UMAP特征空间可视化以及DS融合与单传感器特征图对比,以全面展示系统的性能提升。
1
D-S证据理论是由A. P. Dempster在1967年提出的,后由G. Shafer在1976年系统化发展而成,是一种处理不确定性的信息融合方法。该理论在各种数据融合系统中得到广泛应用,尤其在需要综合多个独立证据源信息时。D-S证据理论的中心思想是通过一个数学框架将证据的综合影响量化,从而得出对某个假设的信任程度。下面详细说明D-S证据理论及其改进算法的知识点。 1. D-S证据理论的相关定义 D-S证据理论首先定义了一个识别框架U,即一个完整的、互斥的元素集合,代表所有可能的情况。在该框架下,通过基本概率分配(Basic Probability Assignment,BPA)来表示对框架内元素的信任程度。BPA用数学表达式表示为Bel:2^U -> [0,1],满足以下两个条件: - Bel(∅) = 0; - ∑_{A⊆U} Bel(A) = 1。 其中Bel(A)即为命题A的基本概率值。 2. 信任函数和似真度函数 信任函数(Belief Function, BEL)和似真度函数(Plausibility Function, PL)是用来表示对命题真假的判断。信任函数Bel(A)表示从当前证据出发,能够确定命题A为真的最小信任度;似真度函数Pl(A)则表示命题A为真时的最大可能信任度。对于任何命题A有以下关系:Bel(A) ≤ Pl(A),这反映了信任的不确定性区间。 3. Dempster合成规则 Dempster合成规则是D-S证据理论的核心,其作用是合成两个或多个证据。该规则如下所述: - 给定两个证据的基本概率分配m1和m2,可由Dempster合成规则计算出合成后的基本概率分配m; - 如果两个证据没有冲突(即它们共同支持某个命题),则合成后的证据会强化这种支持; - 如果两个证据存在冲突(即它们对同一命题的支持度有重叠但又不完全相同),则合成后的证据会削弱这种支持,甚至在极端情况下,如果冲突不可调和(即K趋向于无穷大),Dempster规则则无法给出合成结果。 4. 数据融合过程 D-S证据理论在数据融合中的应用,涉及到多个信息源提供的证据的综合处理。融合过程通常包括以下几个步骤: - 收集信息源提供的证据; - 对每个信息源定义基本概率分配; - 应用Dempster合成规则对各个证据进行合成; - 根据合成后的信任函数和似真度函数,得到最终对某一假设的支持程度。 5. 改进的证据组合方法 尽管D-S证据理论在理论上有广泛应用,但在实际应用中也存在不足,特别是在证据源高度冲突时,合成规则可能无法给出合理的结果。因此,学者们提出多种改进算法,例如Yager提出的修正Dempster规则,能够处理证据完全冲突的情况;还有Dubois-Prade修改法、Murphy修改法等,旨在降低证据冲突对最终合成结果的影响。 6. 应用实例 文章中提出了改进算法的例子,通过实例分析,证明了改进方法能够有效地处理那些证据间存在较大冲突的场合。改进后的算法提高了数据融合的性能和可靠性,对于实际应用系统具有重要意义。 7. 研究背景与基金项目 文章作者马志刚和张文栋来自中北大学电子测试技术国家重点实验室,他们的研究受到山西省自然科学基金项目的支持。这反映了该理论在实际研究中的重要性以及实际应用中的潜在价值。通过获得资助,该研究得以深入并可能推动相关领域的技术进步。 D-S证据理论及其改进算法是数据融合领域中非常重要的理论工具,尤其在不确定性信息处理和决策支持方面表现出了强大的实用价值。通过对该理论的深入理解和算法的改进,可以在多源信息融合系统设计、人工智能决策支持、风险评估等多个领域发挥作用。
2025-04-20 18:18:28 329KB D-S证据理论
1
D-S证据理论(D-S Evidential Theory)相关资料源码打包 D-S证据理论PPT课件 C源码 java源码 Matlab源码
2023-04-10 20:54:23 2.12MB 证据理论 D-S
1
D-S证据理论的融合思想主要体现在待识别对象的多个证据的基本概率分配函数通过某种规则融合在一起,求出所有证据的总支持程度,证据理论给出了多源数据的组合规则
1
为满足复杂环境下目标敌我属性识别能力,提出了一种基于模糊神经网络(FNN :Fuzzy Neural Net- works)和证据理论的新敌我识别方法。该方法利用模糊神经网络和证据理论信息的处理能力,将敌我识别器(IFF :Identification Friend-or-Foe)、电子支援措施(ESM :Electronic Warfare Support Measure)、雷达及红外获取的信息融合,进行敌我识别。仿真结果表明,该方法的识别能力明显优于单一模糊神经网络分类器,识别率达0.994,同时具有
2023-03-09 17:02:30 1.12MB 工程技术 论文
1
D-S证据理论作为一种不确定推理方法,已经广泛用于数据融合和目标识别领域。但是D-S 证据合成公式存在不足之处,使证据理论的应用受到了一定的限制。鉴于此,Yager 对合成公式作了改进,但改进后的合成公式又存在着新的问题。文[2],[3],[4]针对Yager 合成公式进行了一些改进。综合比较了以上几种合成公式,并对文[4]的合成公式进行了一些修正,使其满足结合律,提高了计算效率。
2023-01-30 14:38:07 689KB 论文研究
1
针对配电网故障信息出现异常尤其是不可识别异常而导致误判的问题,提出了一种基于网络树状图和改进D-S证据理论的配电网故障定位新方法。该方法的突出优点在于使用多源信息进行故障定位,可避免因单源信息发生异常导致的误判。首先提出了一种新的基于网络树状图的搜索算法,该算法利用配电网故障时产生的故障指示器信息、配变报警信息和电话投诉信息建立相应的网络树状图,并通过搜索网络树状图进行故障初步定位。然后利用改进D-S证据理论将每种故障信息的定位结果进行信息融合,得到最终的定位结果。实例结果表明所提方法有效、可行,可以解决故障信息出现不可识别异常时的定位问题。
1
基本概率分配函数 定义1 基本概率分配函数 M 设函数 M 是满足下列条件的映射: ① 不可能事件的基本概率是0,即 ; ② 中全部元素的基本概率之和为1,即 则称 M 是 上的概率分配函数,M(A)称为A的基本概率数,表示对A的精确信任。 幂集构成一个框架。
2022-12-16 20:57:16 385KB 5-D-S证据理论方法.ppt
1
人工智能原理教案03章 不确定性推理方法323证据理论
2022-10-24 17:05:38 168KB 人工智能原理教案03章不确定性
1