数据泄露。在2004年至2017年之间,全世界的事件已破坏了30000多个记录。该数据集具有270个观测值和11个变量。其中大多数是类别变量。事件发生在2004年至2017年之间。 Data_Breaches_EN_V2_2004_2017_20180220.csv
2025-06-15 15:45:30 34KB 数据集
1
ISO/IEC 19794-4标准是信息技术领域的一个重要规范,专注于生物特征数据交换格式,特别是关于指印图像数据的部分。这个标准首次发布于2005年6月1日,旨在为全球的指纹识别系统提供统一的数据交换格式,促进不同设备和系统之间的兼容性和互操作性。 在生物识别技术中,指纹识别是一种广泛应用的身份验证方法,因为每个人的指纹都是独一无二的。ISO/IEC 19794-4标准定义了如何捕获、编码、存储和传输手指图像数据,确保这些数据可以在不同的生物识别系统之间准确无误地交换。该标准对于执法、安全、边境控制、访问控制以及身份管理等领域具有重要意义。 标准的主要内容可能包括以下几个方面: 1. **数据结构**:定义了指纹图像数据的结构,包括元数据(如采集设备信息、图像质量指标)和实际的图像数据,通常以二进制格式存储。 2. **编码规则**:规定了如何将指纹图像转换成标准的数字编码,以支持不同系统之间的数据交换。这可能涉及到灰度级或二值化的图像处理算法。 3. **模板生成**:描述了如何从原始图像中提取关键特征(如脊线结构、核心点和三角点),生成压缩的指纹模板,以减小存储和传输的负担。 4. **数据安全与隐私保护**:由于涉及个人生物特征,标准可能包含关于数据保护和隐私的指南,确保数据的安全存储和传输。 5. **兼容性与互操作性**:为了确保不同供应商的设备和软件可以顺利地交换数据,标准可能包含了兼容性测试和认证的指导原则。 6. **性能评估**:规定了评估指纹识别系统性能的方法,包括误接受率(FAR)和误拒绝率(FRR)等指标。 7. **文件格式**:定义了指纹图像数据的文件格式,可能是基于现有的如PDF或其他通用格式,但包含特定的生物特征扩展。 ISO/IEC 19794-4标准的实施促进了指纹识别技术的发展和应用,提高了系统的效率和准确性。同时,通过确保数据的一致性和标准化,它也有助于保护用户的隐私,并为全球范围内的法规遵从提供了基础。 请注意,由于版权限制,此处无法提供标准的详细内容。欲获取完整的信息,建议直接联系ISO或其成员国的成员机构购买官方出版物。
2025-06-14 14:29:06 683KB 指纹识别
1
基于链接聚类的符号属性聚类,何增友,Xu Xiaofei,Categorical data clustering (CDC) and link clustering (LC) have been considered as separate research and application areas. The main focus of this paper is to investigate the commo
2025-06-10 17:51:47 189KB 首发论文
1
Data.olllo-6.1版本,基于python 3.10
2025-06-10 17:11:37 197.04MB
1
GC10-DET是在真实工业中收集的表面缺陷数据集。一个真实的行业。它包含十种类型的表面缺陷,即冲孔(Pu)、焊缝(Wl)、新月形缝隙(Cg)、水斑(Water Spot)。油斑(Os)、丝斑(Ss)、夹杂物(In)、轧坑(Rp)、折痕(Cr)、腰部折痕 (Wf)。 钢材表面缺陷的识别与处理在工业生产中具有极其重要的意义,它关系到产品质量的控制与提升。GC10-DET数据集的发布,为工业界和学术界提供了一种重要的学习和研究资源,以推动表面缺陷检测技术的发展。该数据集是基于真实工业环境采集的,包含了十种典型钢材表面缺陷类型:冲孔、焊缝、新月形缝隙、水斑、油斑、丝斑、夹杂物、轧坑、折痕和腰部折痕。 在这些缺陷中,冲孔(Pu)可能是由于钢材加工过程中出现的机械损伤,而焊缝(Wl)缺陷往往与焊接工艺不当有关。新月形缝隙(Cg)通常是由钢材表面应力分布不均导致的裂缝。水斑(Water Spot)可能是钢材表面在冷却过程中与水接触形成的痕迹,油斑(Os)则是由于表面油污没有清理干净而留下。丝斑(Ss)和夹杂物(In)通常是指在钢材制造过程中混入的异物。轧坑(Rp)缺陷则可能是由于轧制工艺中的压痕导致。折痕(Cr)和腰部折痕(Wf)多与钢材在加工或运输过程中受到的不当弯曲或压力有关。 这些缺陷的存在不仅影响钢材的外观,更重要的是影响其机械性能和使用寿命。在工业生产中,通过有效的检测手段来识别这些缺陷,可以及时进行修复或剔除,以避免造成更大的经济损失。因此,GC10-DET数据集被格式化为YOLO(You Only Look Once)格式,这是一种被广泛应用于计算机视觉领域的实时对象检测系统。YOLO格式的数据集能够使得机器学习模型快速准确地对钢材表面缺陷进行定位和分类。 YOLO算法的核心思想是将对象检测问题转化为一个回归问题,通过单个神经网络同时预测边界框和概率。其优势在于速度快、准确性高,非常适合实时应用。GC10-DET数据集的YOLO格式化,使得研究者和工程师能够直接利用YOLO框架进行模型训练和测试,从而开发出能够在实际生产线中快速检测钢材表面缺陷的智能系统。 此外,由于GC10-DET数据集采集自真实工业环境,其多样性和复杂性为研究者提供了丰富且真实的训练材料。这不仅可以增强模型的泛化能力,还能帮助识别和处理那些在理想环境或合成数据集中难以预测到的缺陷类型。通过深入分析这些数据,工程师可以优化生产工艺,提高钢材质量,进而提升整个工业生产的效率和水平。 YOLO格式的数据集还为自动化的视觉检测系统的设计和实施提供了便利。在现代工业4.0和智能制造的趋势下,自动化的视觉检测技术变得越来越重要。利用GC10-DET数据集训练出来的模型可以被部署到生产线上,实时监控钢材表面的状况,自动标记出缺陷所在,并对缺陷进行分类,这对于实现无人化工厂和智能化生产具有重要意义。 GC10-DET钢材表面缺陷数据集的YOLO格式化,不仅为缺陷检测技术的研究和应用提供了宝贵的资源,还推动了钢材质量控制和智能制造领域的发展。通过对这些数据的深入分析和研究,可以极大提升工业生产的自动化和智能化水平,有效降低缺陷产品的产生,提高整体的工业效率和产品质量。
2025-06-09 14:52:29 917.86MB data
1
1.在Oracle data provider for .net 中发生错误,请与程序供应商取得联系. 2.从数据库更新模型报错:无法将运行时连接字符串转换为设计时等效项,没有为提供程序“xxxx”。 下载安装即可,如果安装有其他版本,先在控制面板,卸载程序里面卸载后在重新安装。
2025-06-07 09:51:36 63.35MB ODTforVS2015 Oracle data prov
1
在神经科学领域,数据的获取和分析是至关重要的步骤,特别是在研究神经元结构与功能时。"neuronal-data-allenapi"项目旨在利用Allen Brain Atlas API来导入和处理神经元数据,这是一个强大的工具,可以帮助研究人员高效地探索大脑的复杂神经网络。下面将详细介绍这个API的使用以及它在Python中的实现。 Allen Brain Atlas API是由艾伦脑科学研究所开发的一个资源,提供了大量关于哺乳动物大脑结构和功能的公开数据。这些数据包括基因表达、细胞类型分类、电路连接性等多个层面,对于理解大脑的工作机制极具价值。在Python环境中,我们可以使用"Allensdk"库来访问这些数据,这个库为API提供了简洁的接口,方便科学家进行数据分析。 在"Jupyter Notebook"环境下,我们可以创建一个交互式的脚本,逐步导入所需的神经元数据。需要安装allensdk库,通过pip命令即可完成: ```bash pip install allensdk ``` 接下来,我们需要导入相关的模块并设置API的访问凭据: ```python from allensdk.core.mouse_connectivity_cache import MouseConnectivityCache from allensdk.api.queries.cell_types_api import CellTypesApi # 设置API的访问密钥 api_key = "your_api_key" ``` 然后,我们可以通过CellTypesApi来查询和下载神经元数据。例如,我们可以获取特定类型的神经元数据: ```python cell_types_api = CellTypesApi(api_key=api_key) cell_type_info = cell_types_api.get_cell_type_info('Sst-IRES-Cre') # 下载该类型的神经元数据 data = cell_types_api.get_image_set_data(cell_type_info['image_set_ids'][0]) ``` 在这个过程中,`get_cell_type_info`用于获取细胞类型的信息,`get_image_set_data`则用于下载相关图像数据。这些数据可能包括电子显微镜切片、光遗传学实验等不同来源的信息。 对于更复杂的任务,如数据的预处理、可视化和分析,"allensdk"还提供了多种工具。例如,可以使用`MouseConnectivityCache`来缓存和管理大量的神经元连接性数据,便于后续分析: ```python cache = MouseConnectivityCache(root_dir="path/to/cache/directory", api_key=api_key) connectivity = cache.get_connectivity() ``` 在Jupyter Notebook中,我们可以结合matplotlib或seaborn等库,直观地展示神经元的结构和连接模式,进一步理解大脑的网络拓扑。 "neuronal-data-allenapi"项目提供了一个框架,让科研人员能够便捷地利用Allen Brain Atlas API来探索神经元数据,这对于推进大脑科学研究具有重大意义。通过学习和应用这个项目,研究人员可以更深入地了解大脑的神经网络,并可能发现新的生物学现象和功能机制。
2025-06-05 12:46:38 10KB JupyterNotebook
1
leo-data-getter.zip GNSS数据自动化下载系统的设计与实现
2025-06-01 18:19:10 10KB
1
本书《Python Data Analysis - Second Edition》深入介绍了使用Python进行数据操纵和复杂数据分析的过程。Python作为一种广泛使用的编程语言,因其简洁和高效的特性,在数据分析领域占据着重要地位。通过本书,读者能够学习到如何使用Python及其相关的库,如NumPy、pandas、matplotlib等,来进行数据处理、分析和可视化。数据分析过程中所涉及的主要步骤包括数据收集、清洗、探索、分析和解释,而Python的生态系统中提供了丰富的工具来支持这些步骤的实施。 在数据操纵方面,本书很可能会探讨pandas库的高级使用技巧。pandas是一个强大的数据分析工具包,提供了高性能、易于使用的数据结构和数据分析工具。它允许用户对数据进行各种操作,如数据合并、重塑、分组以及数据清洗等,这些都是数据科学中不可或缺的技能。通过这些操作,数据分析者能够将原始数据转化为可供分析和可视化的高质量数据集。 另外,本书在数据分析章节中,很可能会讲解统计分析的基本概念,以及如何运用Python中的统计函数和模型来提取数据中的有用信息。在复杂数据处理的过程中,算法的选择和应用尤为关键,本书可能会涵盖机器学习算法的基础知识以及如何将算法应用于实际数据集。 在数据可视化的部分,书中很可能会介绍matplotlib库的使用,这是一个Python的绘图库,可以创建高质量的二维图表。通过matplotlib,读者可以学习到如何制作图表来更直观地展示数据分析的结果。此外,本书可能也会介绍更先进的可视化工具,如Seaborn或Plotly,这些工具提供了更加丰富和动态的可视化选项。 本书所涵盖的内容不仅仅是理论的堆砌,还会包含大量的实例和案例研究,帮助读者将理论知识转化为实际操作能力。这些实例和案例研究将涵盖从数据准备到最终分析结果展示的整个流程,确保读者能够全面理解数据分析的过程。 在版权信息部分,本书声明了所有权利保留,未经授权不得复制、存储或通过任何方式传播,除了在批判性文章或评论中简短引用外。同时,书中也声明了包含的信息没有担保,无论是明示还是暗示的。作者、出版商以及分销商不承担由本书直接或间接造成任何损害的法律责任。出版商虽然努力提供了书中提及的所有公司和产品的商标信息,但并未保证信息的准确性。 《Python Data Analysis - Second Edition》是针对数据科学和数据分析的专业人士或学习者的一本重要参考资料。通过系统地介绍和示例演示,本书能够帮助读者掌握使用Python进行数据操纵和分析的技巧,进而提升数据处理和解读的综合能力。
2025-06-01 10:01:55 8.15MB Python
1
orekit-data.zip,压缩包中包含以下内容,其中的update.sh可以用于将数据更新到当前最新。 CSSI-Space-Weather-Data DE-441-ephemerides Earth-Orientation-Parameters fes2004_Cnm-Snm.dat itrf-versions.conf MSAFE Potential README.md tai-utc.dat update.sh
2025-05-28 19:18:37 19.39MB
1