内容概要:本文介绍了一种基于DDPG(深度确定性策略梯度)算法的自适应PID参数控制方法,并详细展示了其在Matlab环境中的实现过程。传统的PID参数调节依赖于人工经验,难以应对复杂多变的工业环境。为解决这一问题,作者提出使用强化学习中的DDPG算法来自适应调整PID参数。文中首先介绍了PID控制器的基本概念以及传统调参方法的局限性,接着阐述了DDPG算法的工作原理,包括环境定义、奖励函数设计、演员-评论家双网络架构的具体实现方式。最后,通过锅炉温度控制实验验证了该方法的有效性和优越性。 适合人群:自动化控制领域的研究人员和技术人员,尤其是对智能控制算法感兴趣的读者。 使用场景及目标:适用于需要精确控制温度、压力等物理量的工业场合,如化工生产、电力系统等。目标是提高系统的稳定性和鲁棒性,减少人为干预,提升自动化程度。 阅读建议:读者可以通过阅读本文了解如何将现代机器学习技术应用于经典控制理论中,掌握DDPG算法的基本思想及其在Matlab中的具体实现步骤。同时,还可以根据自身需求修改被控对象模型,进一步拓展应用范围。
2025-09-29 17:57:16 667KB 强化学习 控制系统优化
1
基于深度强化学习算法的电力市场决策建模:DDPG策略在发电商竞价中的应用研究,基于深度强化学习算法的电力市场竞价策略建模程序代码研究——深度探索DDPG在发电商竞价决策中的应用,基于Agent的电力市场深度决策梯度(深度强化学习)算法建模程序代码 基于DDPG(深度确定性梯度策略)算法的电公司竞价策略研究 关键词:DDPG 算法 深度强化学习 电力市场 发电商 竞价 ,DDPG算法;深度强化学习;电力市场;发电商;竞价,基于DDPG算法的电力市场深度决策建模程序代码 在电力市场中,竞价策略对发电商的利润和市场的整体效率具有重要影响。近年来,随着深度强化学习算法的发展,发电商竞价策略的研究进入了一个新的阶段。深度强化学习算法,尤其是深度确定性梯度策略(DDPG),在处理连续动作空间的复杂决策问题时表现出了独特的优势。本研究旨在探讨DDPG策略在电力市场发电商竞价中的应用,通过构建基于DDPG的竞价模型,实现在动态变化的电力市场环境下,发电商的最优竞价策略。 深度强化学习结合了深度学习和强化学习的优点,能够处理高维状态空间和动作空间的决策问题。在电力市场中,发电商需要根据市场的实时供需情况、竞争对手的行为、成本信息等多维信息做出决策,这为深度强化学习提供了良好的应用场景。DDPG算法通过使用深度神经网络来近似策略函数和价值函数,能够处理连续动作空间,并通过与环境的交互来学习最优策略。 在电力市场竞价模型中,发电商需要决定在每个时段提供多少电能以及相应的报价。一个有效的竞价策略能够帮助发电商在满足市场需求的同时最大化其利润。DDPG算法通过构建一个智能体(Agent),使其在与电力市场环境的交互中学习到最优的竞价策略。智能体通过经验回放和目标网络技术来稳定学习过程,并采用actor-critic架构来平衡探索和利用。 研究中,发电商的竞价模型考虑了市场电价的波动、发电商的成本结构、竞争对手行为等因素,通过模拟电力市场环境的动态变化,评估DDPG算法在不同场景下的性能。实验结果表明,基于DDPG算法的竞价策略能够在复杂的市场环境下实现高效的资源分配和利润最大化。 此外,本研究还对DDPG算法在电力市场竞价中的应用进行了深入的分析,探讨了算法参数的调整对策略性能的影响,以及如何提高算法的稳定性和收敛速度。研究成果不仅为发电商提供了一种新的竞价策略设计方法,也对电力市场运营机构和监管机构提供了决策支持,帮助其更好地理解和预测市场参与者的行为。 研究成果的文档包括了对DDPG算法理论基础的介绍、电力市场竞价环境的建模、算法实现的具体步骤、实验设计和结果分析等部分。此外,还提供了相关程序代码的实现细节,为其他研究者或实际操作者提供了可复现的研究成果和实践指导。 电力市场竞价模型和策略的研究对于提升电力市场运行效率、促进清洁能源的消纳、保障电力系统的稳定运行具有重要意义。随着深度强化学习技术的不断进步,未来在电力市场中的应用前景将更加广阔,值得进一步深入探索。
2025-09-24 14:31:12 1.81MB xhtml
1
内容概要:本文探讨了从2自由度到6自由度机械臂的轨迹跟踪控制方法,重点介绍了利用深度确定性策略梯度(DDPG)强化学习算法进行控制的研究。文中详细解释了2自由度机械臂的基础运动学公式及其经典控制算法的应用,同时深入讨论了6自由度机械臂的复杂运动学建模。此外,还提供了DDPG算法的具体实现步骤,并展示了如何将其应用于机械臂的轨迹跟踪控制中。最后,通过Simulink仿真平台进行了实验验证,确保控制算法的有效性和可行性。 适合人群:从事机器人技术研究的专业人士、高校相关专业师生、对机械臂控制和强化学习感兴趣的科研人员。 使用场景及目标:适用于希望深入了解机械臂轨迹跟踪控制机制的研究者,尤其是那些希望通过强化学习改进现有控制方法的人群。目标是在理论和实践中掌握DDPG算法的应用技巧,提高机械臂在各种应用场景中的精度和效率。 其他说明:文章不仅涵盖了机械臂的基本概念和技术背景,还包括详细的数学推导和代码示例,帮助读者更好地理解和实施所介绍的方法。
2025-09-07 22:57:34 3.92MB
1
内容概要:本文介绍了一种基于DDPG(深度确定性策略梯度)算法的强化学习自适应PID参数控制方法,并详细展示了其在MATLAB环境中的实现过程。传统的PID参数调节依赖于人工经验,难以应对复杂多变的工业环境。为解决这一问题,作者提出了一种新的方法,即通过DDPG算法自动调整PID控制器的比例、积分和微分参数。文中首先介绍了PID控制器的基本概念以及传统调参方法的局限性,随后详细描述了DDPG算法的工作原理,包括环境搭建、奖励函数设计、演员-评论家双网络架构的构建以及训练过程中的探索策略。最后,通过锅炉温度控制的实际案例验证了该方法的有效性和优越性。 适合人群:自动化控制领域的研究人员和技术人员,尤其是对强化学习和PID控制感兴趣的读者。 使用场景及目标:适用于需要精确控制系统的工业场合,如温度控制、电机控制等。目标是提高控制系统的稳定性和响应速度,减少人为干预,提升生产效率。 其他说明:尽管该方法在某些方面表现出色,但在应对突变干扰时仍存在一定的延迟。未来可以通过改进算法或优化模型进一步提升性能。此外,该框架具有良好的通用性,可以方便地应用于不同的被控对象。
2025-09-02 14:54:41 630KB
1
内容概要:本文详细探讨了强化学习中的DDPG(深度确定性策略梯度)算法及其在控制领域的应用。首先介绍了DDPG的基本原理,即一种能够处理连续动作空间的基于策略梯度的算法。接着讨论了DDPG与其他经典控制算法如MPC(模型预测控制)、鲁棒控制、PID(比例积分微分控制)和ADRC(自抗扰控制)的结合方式,展示了它们在提高系统性能方面的潜力。文中还提供了具体的编程实例,包括Python和MATLAB代码片段,演示了如何构建DDPG智能体以及将其应用于机械臂轨迹跟踪、自适应PID控制和倒立摆控制等问题。此外,强调了MATLAB Reinforcement Learning工具箱的作用,指出它为实现这些算法提供了便捷的方法。 适合人群:对控制理论有一定了解的研究人员和技术爱好者,特别是那些希望深入了解强化学习与传统控制方法结合的人群。 使用场景及目标:适用于需要解决复杂非线性系统控制问题的场合,如机器人运动规划、自动化生产线管理等领域。目标是通过引入DDPG算法改进现有控制系统的响应速度、精度和鲁棒性。 其他说明:文章不仅涵盖了理论层面的知识,还包括大量实用的操作指南和代码示例,有助于读者快速掌握相关技能并在实践中加以运用。同时提醒读者关注算法融合时的一些关键细节,比如奖励函数的设计、混合比例的选择等。
2025-08-01 15:04:02 685KB
1
内容概要:本文详细探讨了强化学习中的DDPG(深度确定性策略梯度)算法及其在控制领域的应用。首先介绍了DDPG的基本原理,即一种能够处理连续动作空间的基于策略梯度的算法。接着讨论了DDPG与其他经典控制算法如MPC(模型预测控制)、鲁棒控制、PID(比例积分微分控制)和ADRC(自抗扰控制)的结合方式,展示了它们在提高系统性能方面的潜力。文中还提供了具体的编程实例,包括Python和MATLAB代码片段,演示了如何构建DDPG智能体以及将其应用于机械臂轨迹跟踪、自适应PID控制和倒立摆控制等问题。此外,强调了MATLAB Reinforcement Learning工具箱的作用,指出它为实现这些算法提供了便捷的方法。 适合人群:对控制理论有一定了解的研究人员和技术爱好者,特别是那些希望深入了解强化学习与传统控制方法结合的人群。 使用场景及目标:适用于需要解决复杂非线性系统控制问题的场合,如机器人运动规划、自动化生产线管理等领域。目标是通过引入DDPG算法改进现有控制系统的响应速度、精度和鲁棒性。 其他说明:文章不仅涵盖了理论层面的知识,还包括大量实用的操作指南和代码示例,有助于读者快速掌握相关技能并在实践中加以运用。同时提醒读者关注算法融合时的一些关键细节,比如奖励函数的设计、混合比例的选择等。
2025-06-14 21:33:21 1.06MB
1
强化学习DDPG算法在Simulink与MATLAB中的实现与应用:自适应PID与模型预测控制融合的新尝试,基于强化学习DDPG算法的自适应控制及机械臂轨迹跟踪优化研究,强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcement learning工具箱,具体例子的编程。 根据需求进行算法定制: 1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。 2.基于强化学习DDPG的机械臂轨迹跟踪控制。 3.基于强化学习的自适应控制等。 4.基于强化学习的倒立摆控制。 ,核心关键词: 强化学习算法; DDPG算法; Simulink或MATLAB编写; MPC; 自适应PID; 模型预测控制算法; RL工具箱; 结合控制算法; 鲁棒控制; 轨迹跟踪控制; 机械臂; 倒立摆控制。,强化学习在控制系统中的应用与实现:从DDPG到MPC及PID鲁棒自适应控制
2025-05-12 15:32:12 1.78MB
1
强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
2024-05-28 23:49:58 5KB 强化学习
1
通过simulink实现基于DDPG强化学习的控制器建模与仿真,这个是matlab自带的一个案例,在simulink入门60例中【Simulink教程案例50】,以该模型为例,对该模型进行介绍。
2024-04-08 10:23:07 228KB matlab DDPG 强化学习
1
强化学习算法合集(DQN、DDPG、SAC、TD3、MADDPG、QMIX等等)内涵20+强化学习经典算法代码。对应使用教程什么的参考博客: 多智能体(前沿算法+原理) https://blog.csdn.net/sinat_39620217/article/details/115299073?spm=1001.2014.3001.5502 强化学习基础篇(单智能体算法) https://blog.csdn.net/sinat_39620217/category_10940146.html
2023-05-15 19:40:13 17.37MB 强化学习 人工智能 MADDPG TD3
1