面膜检测-深层神经网络-三重解决方案 遮罩检测问题的三种解决方案,第一种以卷积神经网络的形式呈现,第二种以全连接神经网络的形式呈现,第三种以传递学习神经网络为基础。它们是通过Tensorflow Keras实现的。 背景 该报告介绍了遮罩检测问题及其解决方案。 它包含描述三种不同神经网络的三种配置:第一种是完全连接的网络。 第二个是基于转移学习的网络,第三个是卷积神经网络。 在此报告中,您将找到使用上述模型和其他信息(例如图形,代码行屏幕截图,损失与验证以及其他有助于理解我们的项目的ML概念)解决此问题的完整过程。 资料说明 用于训练模型的数据包含10,000张图像,其中一半显示一个戴着口罩的人,另一半显示未蒙面的人。我们使用的数据包含一个验证集,包含1,000张图片,500张蒙面和500张无遮盖的脸。 第三组用于测试模型,其中包含1,000张图片,500张蒙面和500张非蒙面。 你可以从
2022-06-16 21:54:11 1.54MB JupyterNotebook
1
matlab界面选择代码深层神经网络转移学习EEG-MEG- 该代码具有两个基于SGD和adam的CNN模型(模型1和2)。 还包括维格纳维尔(Wigner-ville)分发代码 功能:RAW EEG,短时傅立叶变换,Wigner-ville分布 深度学习参数适应:贝叶斯优化 平台:Matlab,Python 该代码用于复制题为“单一模型深度学习方法可以增强基于EEG的脑机接口的分类精度吗?”的论文。 如果您使用的是部分代码,请引用这些论文: 罗伊·苏吉特(Roy,Sujit)等。 “通道选择改善了基于MEG的脑机接口。” 2019年第9届国际IEEE / EMBS神经工程会议(NER)。 IEEE,2019年。 Roy,S.,McCreadie,K.和Prasad,G.,2019年10月。 单一模型深度学习方法能否提高基于EEG的脑机接口的分类精度? 在2019年IEEE系统,人与控制论国际会议(SMC)(pp.1317-1321)中。 IEEE。 正在开发中
2022-04-04 10:47:47 18KB 系统开源
1
利用深度神经网络学习的特征进行多类轴承故障分类 该存储库包含提交给的论文的代码,该论文使用已学习的数据驱动功能进行故障诊断。 无需手动计算特征,而是通过深度神经网络从数据中学习特征。 然后将这些学习到的功能与SVM一起用于故障分类。 还提出了一种解释数据驱动功能的经验方法。 该论文已被接受并将出现在会议记录中。 数据: 我们使用公开可用的。 该数据集实际上是为预后应用准备的。 但是,我们将其用于故障诊断任务。 我们考虑四种故障类型:正常故障,内部故障,外部故障和球形故障。 原始数据是在几个月内收集的,直到其中一个轴承发生故障。 因此,对于正常情况,我们已在实验开始时收集了数据。 同样,对于错误情况,我们已在实验结束时获取了数据,该数据更接近发生错误的时间点。 我们实验中使用的文件的详细信息可以在下面找到。 提取后,包含原始数据的压缩文件提供了三个文件夹:1st_test,2nd_tes
1
深度神经网络自监督视觉特征学习综述 为了在计算机视觉应用中学习得到更好的图像和视频特征,通常需要大规模的标记数据来训练深度神经网络。为了避免收集和标注大量的数据所需的巨大开销,作为无监督学习方法的一个子方法——自监督学习方法,可以在不使用任何人类标注的标签的情况下,从大规模无标记数据中学习图像和视频的一般性特征。本文对基于深度学习的自监督一般性视觉特征学习方法做了综述。首先,描述了该领域的动机和一些专业性术语。在此基础上,总结了常用的用于自监督学习的深度神经网络体系结构。接下来,回顾了自监督学习方法的模式和评价指标,并介绍了常用的图像和视频数据集以及现有的自监督视觉特征学习方法。最后,总结和讨论了基于标准数据集的性能比较方法在图像和视频特征学习中的应用。 https://ieeexplore.ieee.org/document/9086055 https://www.zhuanzhi.ai/paper/0e9852bb57c7fe00cc59723fc0ee899f 引言 由于深度神经网络具有学习不同层次一般视觉特征的强大能力,它已被作为基本结构应用于许多计算机视觉应用,如目标检测[1]、[2]、[3]、语义分割[4]、[5]、[6]、图像描述[7]等。从像ImageNet这样的大规模图像数据集训练出来的模型被广泛地用作预训练模型和用于其他任务的微调模型,主要有两个原因:(2)在大规模数据集上训练的网络已经学习了层次特征,有助于减少在训练其他任务时的过拟合问题;特别是当其他任务的数据集很小或者训练标签很少的时候。 深度卷积神经网络(ConvNets)的性能在很大程度上取决于其能力和训练数据量。为了增加网络模型的容量,人们开发了不同类型的网络架构,收集的数据集也越来越大。各种网络,包括AlexNet [9], VGG [10], GoogLeNet [11], ResNet [12], DenseNet[13]和大规模数据集,如ImageNet [14], OpenImage[15]已经被提出训练非常深的ConvNets。通过复杂的架构和大规模的数据集,ConvNets的性能在许多计算机视觉任务[1],[4],[7],[16],[17],[18]方面不断突破先进水平。 然而,大规模数据集的收集和标注是费时和昂贵的。ImageNet[14]是pre-training very deep 2D convolutional neural networks (2DConvNets)中应用最广泛的数据集之一,包含约130万张已标记的图像,覆盖1000个类,而每一幅图像由人工使用一个类标签进行标记。与图像数据集相比,视频数据集由于时间维度的原因,其采集和标注成本较高。Kinetics数据集[19]主要用于训练ConvNets进行视频人体动作识别,该数据集由50万个视频组成,共600个类别,每个视频时长约10秒。许多Amazon Turk工作人员花了大量时间来收集和注释如此大规模的数据集。 为了避免费时和昂贵的数据标注,提出了许多自监督方法来学习大规模无标记图像或视频的视觉特征,而不需要任何人工标注。一种流行的解决方案是提出各种各样的前置任务让网络来解决,通过学习前置任务的目标函数来训练网络,通过这个过程来学习特征。人们提出了各种各样的自监督学习任务,包括灰度图像着色[20]、图像填充[21]、玩图像拼图[22]等。藉口任务有两个共同的特性:(1)图像或视频的视觉特征需要被ConvNets捕捉来解决前置任务;(2)监控信号是利用数据本身的结构(自我监控)产生的。 自监督学习的一般流程如图1所示。在自监督训练阶段,为ConvNets设计预定义的前置任务,并根据数据的某些属性自动生成前置任务的伪标签。然后训练卷积神经网络学习任务的目标函数。当使用前置任务进行训练时,ConvNet的较浅的块集中于低级的一般特征,如角、边和纹理,而较深的块集中于高级任务特定的特征,如对象、场景和对象部分[23]。因此,通过藉由任务训练的ConvNets可以学习内核来捕获低级特征和高级特征,这对其他下游任务是有帮助的。在自监督训练结束后,学习到的视觉特征可以作为预训练的模型进一步转移到下游任务中(特别是在数据相对较少的情况下),以提高性能和克服过拟合。通常,在有监督的下游任务训练阶段,仅从前几层传递视觉特征。
2021-10-26 17:06:00 2.55MB 深度学习
1
MotioNet 该库提供的源代码[[Transaction on Graphics(ToG)2020],这是一种运动学的深度神经网络,可以从单眼视频中重建3D骨骼人体运动。 基于通用运动表示设计的网络及其直接输出可以转换为bvh文件,而无需任何后处理步骤。 MotioNet:具有骨架一致性的单眼视频的3D人体运动重构:| | 先决条件 Linux 的Python 3 NVIDIA GPU + CUDA CuDNN 2D姿势检测工具(用于评估野生视频,现在支持: ) 根据您的Cuda版本,选择合适的版本并安装它,然后运行以下命令来安装其他软件包: pip install -r requirements.txt 快速开始 我们提供了一个预训练的模型和一些演示示例,这些示例演示了我们的框架是如何工作的。 为了运行演示,请从 下载1.预训练的模型并将其放置在./checkpoin
1
The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the performance of these systems.
2019-12-21 21:00:14 833KB 深度学习 关系提取
1