修剪后的依赖树上的图卷积用于关系提取 此回购包含PyTorch代码,用于修剪。 本文/代码在修剪的依赖树上引入了图卷积神经网络(GCN),用于关系提取的任务。 还引入了一种特殊的树修剪技术,称为“以路径为中心的修剪”,以从树中消除不相关的信息,同时最大程度地维护相关信息。 与诸如各种基于LSTM的模型之类的序列模型相比,此GCN模型利用依赖结构桥接远程单词,因此提高了远程关系的性能。 与以前的递归模型(如TreeLSTM)相比,此GCN模型在获得更好的性能的同时,也更早地实现了并行化,因此效率更高。 参见下面的模型架构概述: 要求 Python 3(在3.6.5上测试) PyTorch(
1
SpaCy官方中文模型已经上线( ),本项目『推动SpaCy中文模型开发』的任务已经完成,本项目将进入维护状态,后续更新将只进行bug修复,感谢各位用户长期的关注和支持。 SpaCy中文模型 为SpaCy提供的中文数据模型。模型目前还处于beta公开测试的状态。 在线演示 基于Jupyter notebook的在线演示在 。 特性 部分王小明在北京的清华大学读书这个Doc对象的属性信息: NER(新! ) 部分王小明在北京的清华大学读书这个Doc对象的NER信息: 开始使用 SpaCy(版本> 2)的基础知识。 系统要求 Python 3(也许支持python2,但未通过良好测试) 安装 下载模型 从页面下载模型( New!为中国地区的用户提供了加速下载的链接)。假设所下载的模型称为zh_core_web_sm-2.xxtar.gz 。 安装模型 pip install zh_core_web_sm-2.x.x.tar.gz 为了方便后续在Rasa NLU等框架中使用,需要再为这个模型建立一个链接,通过执行以下命令: spacy link zh_core_web_sm zh 运行完
1