efficientnet-b3-5fb5a3c3.pth
2025-05-28 15:00:59 47.1MB efficientnet
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
efficientnet-b7_3rdparty_8xb32-aa_in1k_20220119-bf03951c.pth
2025-04-18 19:56:50 254.48MB 预训练权重 backbone
1
与Keras应用程序兼容的EfficientNet噪声学生砝码。 efficientnetb0_notop.h5 efficientnetb1_notop.h5 efficientnetb2_notop.h5 efficientnetb3_notop.h5 efficientnetb4_notop.h5 efficientnetb5_notop.h5 efficientnetb6_notop.h5 efficientnetb7_notop.h5
2024-06-21 21:25:20 639.23MB 数据集
1
EfficientNet_classification。EfficientNet在pytorch框架下实现图像分类,拿走即用。该文件包含python语言编写的model文件、my_dataset文件、predict文件、train文件、配置文件等。能够实现训练自己的数据集进行图像分类,以及对训练后的网络进行测试。EfficientNet利用NAS(Neural Architecture Search)搜索技术,将输入分辨率,网络的深度、宽度三者同时考虑,搭建更nice的网络结构。EfficientNet-B0的网络框架,总体看,分成了9个Stage:Stage1 是一个卷积核大小为3x3,步距为2的普通卷积层(包含BN和激活函数Swish);Stage2~Stage8 是在重复堆叠 MBConv 结构;Stage9 是一个普通的1x1的卷积层(包含BN和激活函数Swish) + 一个平均池化层 + 一个全连接层组成
2023-04-03 10:06:10 12KB pytorch EfficientNet 图像分类 python
1
YOLOV3:只看一次目标检测模型在Pytorch当中的实现-替换高效网络主干网络 2021年2月8日更新:加入letterbox_image的选项,关闭letterbox_image后网络的地图得到大幅度提升。 目录 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 行动计划0.5:0.95 行动计划0.5 挥发性有机化合物07 + 12 VOC-Test07 416x416 -- 78.9 所需环境 火炬== 1.2.0 文件下载 训练所需的efficiencynet-b2-yolov3的权重可以在百度云下载。链接: : 提取码:hiuq其他版本的efficiencynet的权重可以将YoloBody(Config,phi = phi,load_weights = False)的load_weights参数设置成True,从而获得。 预测步骤 a,使用预训练权
2023-03-08 21:17:47 5.32MB 系统开源
1
keras efficientnet的预训练模型。来自:https://github.com/Callidior/keras-applications/releases/
2023-02-02 19:39:30 42.06MB efficientnet
1
高效Net-Lite火炬 Google的Pytorch实现。 提供imagenet预训练模型。 在EfficientNet-Lite中,所有的SE模块均被删除,所有的交换层都被ReLU6取代。 对于边缘设备,它比EfficientNet-B系列更友好。 型号详情: 模型 参量 MAdds Top1 Acc(官方) Top1 Acc(此回购) 前5名 efficiencynet-lite0 470万 407M 75.1% 71.73% 90.17% efficiencynet-lite1 540万 631M 76.7% 74.71% 92.01% efficiencynet-lite2 610万 899M 77.6% 77.14% 93.54% efficiencynet-lite3 820万 1.44B 79.8% 78.91% 94.37
2022-07-19 15:03:07 18KB Python
1
MindSpore EfficientNet
2022-07-16 21:05:08 286.38MB 人工智能
1
Yolo通用目标检测模型与EfficientNet-lite结合使用,计算量仅为230Mflops(0.23Bflops),模型大小为1.3MB:high_voltage:Yolo-Fastest:high_voltage:简单,快速,紧凑,易于移植实时目标检测算法适用于所有平台基于yolo的最快和最小的已知通用目标检测算法速度比mobilenetv2-yolov3-nano快45%,参数数量减少56%评估指标网络VOC mAP(0.5)分辨率运行时间(Ncnn 1xCore)运行时间(Ncnn 4xCore)FLOPS重量大小MobileNetV2-YOLOv3-Nano 65.27 320 11.36ms 5.48ms 0.55BFlops 3.0MB Yolo-Fas
2022-06-16 10:58:28 22.35MB C/C++ Machine Learning
1