内容概要:本文详细探讨了基于金属纳米孔阵列的宽带全息超表面技术,重点介绍了其单元结构仿真、几何相位与偏振转换效率的关系、全息相位的GS算法迭代计算方法以及标量衍射计算重现全息的方法。通过FDTD仿真,研究了金属纳米孔在不同转角下的电磁场分布及其对几何相位的影响。利用GS算法优化全息相位分布,实现了远场全息图像的最佳效果。此外,还通过标量衍射理论计算得到了全息图像的复振幅分布,并将其应用于实际光场分布的重现。最后,通过对超表面模型的建模和远场全息显示计算,验证了模型和算法的有效性。 适合人群:光学工程、物理电子学及相关领域的研究人员和技术人员,尤其是对全息技术和超表面感兴趣的学者。 使用场景及目标:适用于希望深入了解全息超表面技术的研究人员,旨在帮助他们掌握FDTD仿真、GS算法优化及标量衍射计算的具体应用,以便于开展相关实验和理论研究。 其他说明:文中提供了详细的FDTD建模脚本、MATLAB代码及Word教程,便于读者复现实验并深入理解宽带全息超表面的设计原理和GS算法的迭代过程。
2025-12-01 23:06:08 1.46MB
1
“基于金属纳米孔阵列的超表面全息显示技术研究:FDTD仿真与GS算法优化设计”,宽带全息超表面模型 金属纳米孔 fdtd仿真 复现lunwen:2018年博士lunwen:基于纳米孔阵列超表面的全息显示技术研究 lunwen介绍:单元结构为金属纳米孔阵列,通过调整纳米孔的转角调控几何相位,全息的计算由标量衍射理论实现,通过全息GS算法优化得到远场全息图像; 案例内容:主要包括金属纳米孔的单元结构仿真、几何相位和偏振转效率与转角的关系,全息相位的GS算法迭代计算方法,标量衍射计算重现全息的方法,以及超表面的模型建模和远场全息显示计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位GS算法的代码和标量衍射计算的代码,以及模型仿真复现结果,和一份word教程,宽带全息超表面的设计原理和GS算法的迭代过程具有可拓展性,可用于任意全息计算; ,关键词:宽带全息超表面模型; 金属纳米孔; fdtd仿真; 纳米孔阵列超表面; 全息显示技术; 标量衍射理论; GS算法迭代计算; 几何相位; 偏振转换效率; 超表面模型建模; 远场全息图像复现; fdtd模型; Matlab计算相位代
2025-12-01 23:05:16 1.49MB 数据结构
1
内容概要:本文详细探讨了基于金属纳米孔阵列的宽带全息超表面技术,重点介绍了其单元结构仿真、几何相位与偏振转换效率的关系、全息相位的GS算法迭代计算方法以及标量衍射计算重现全息的方法。通过FDTD仿真和MATLAB代码实现了模型的构建和全息图像的远场显示。研究不仅复现了2018年博士论文的内容,还深入分析了各关键步骤的技术细节及其应用前景。 适合人群:光学工程、物理电子学及相关领域的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解超表面全息显示技术的研究人员,特别是那些关注金属纳米孔阵列、FDTD仿真和GS算法的人群。目标是掌握从理论到实践的完整流程,能够独立进行相关实验和模拟。 其他说明:文中提供的FDTD建模脚本、MATLAB代码和详细的Word教程有助于读者更好地理解和复现实验过程。此外,研究结果具有广泛的可扩展性和应用潜力,可用于多种全息计算任务。
2025-12-01 23:01:31 2.32MB
1
FDTD Solutions 是一款三维麦克斯韦方程求解软件,可以分析紫外、可见、红外至太赫兹和微波频率段电磁波与具有亚波长典型尺寸复杂结构的相互作用。
2025-11-22 08:12:09 6.92MB FDTD
1
内容概要:本文详细介绍了超构透镜(Metalens)设计过程中使用的Lumerical FDTD仿真工具及其与MATLAB的联合应用。主要内容涵盖参数扫描以获得相位与半径的关系,目标相位和半径的计算,以及如何通过MATLAB和Lumerical FDTD的结合实现超构透镜的一键建模。文中还提供了具体的代码示例,展示了如何通过改变结构参数来优化超构透镜的性能,并强调了自动化建模在提高设计效率方面的优势。 适合人群:光学工程领域的研究人员、研究生以及从事超构透镜设计的专业人士。 使用场景及目标:适用于需要高效设计和优化超构透镜的研究项目,旨在通过自动化手段减少手动调参的时间成本,提高仿真和设计的准确性。 其他说明:文中提供的代码和方法不仅限于理论探讨,还包括实际操作指导,有助于初学者快速掌握相关技能。同时,文中提到的一些具体技术和技巧,如相位提取、参数扫描和自动化建模,对于有经验的研究人员也有重要参考价值。
2025-11-05 17:33:59 538KB
1
FDTD(时域有限差分)仿真模型的建立及其在光子器件设计中的应用,重点探讨了逆向设计中的多种算法,如二进制算法、遗传算法、粒子群算法和梯度算法。首先,文章解释了FDTD的基本原理,包括仿真区域和边界条件的确定、网格划分、初始条件设定以及麦克斯韦方程的求解步骤。接着,阐述了逆向设计的概念及其在光子器件优化中的重要性,并具体介绍了四种算法的工作机制。最后,展示了这些技术和算法在实际光子器件(如分束器、波分复用器、二极管、模式滤波器、模分复用器等)的设计与仿真中的应用实例。 适合人群:从事光子学研究的技术人员、高校相关专业师生、对光子器件设计感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FDTD仿真技术及逆向设计算法的研究人员,旨在提高光子器件的设计效率和性能优化能力。 其他说明:文中不仅提供了理论背景,还结合了具体的案例分析,有助于读者更好地理解和掌握相关技术的实际应用。
2025-11-01 21:30:11 254KB FDTD 遗传算法 粒子群算法 逆向设计
1
实时偏振成像的超构透镜模型:硅纳米柱构成的超表面FDTD仿真及偏振解耦合研究,全介质超构透镜模型实现偏振成像:实时分离聚焦与偏振信息解码,偏振成像 超构透镜模型 超表面 FDTD仿真 复现lunwen:2019年 APL Midinfrared real-time polarization imaging with all-dielectric metasurfaces lunwen介绍:全介质实时偏振聚焦成像超构透镜模型,可以实现X Y RCP LCP四个偏振态的实时分离和聚焦的功能,通过四个强度的计算可以得到入射光场的偏振信息。 超构透镜由硅纳米柱构成,通过偏振复用和空间复用原理同时调控四个偏振态的光场相应。 案例内容:主要包括硅纳米柱的单元结构仿真、相位和透射率的参数化扫描,偏振复用超构透镜的偏振解耦合相位计算代码,空间复用的超构透镜模型建模脚本,以及多偏振聚焦的超构透镜模型,和对应的远场电场分布计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位代码和模型仿真复现结果,以及一份word教程,超构透镜的偏振复用和解耦合相位计算代码可用于任意偏振调控设计,具备可拓展
2025-10-27 15:30:35 9.56MB paas
1
基于Lumerical FDTD仿真的不对称光栅衍射效率研究与复现多级次案例,Lumerical FDTD模拟研究:复现不对称光栅多级衍射效率的精确计算与解析,Lumerical FDTD复现不对称光栅不同级的衍射效率 ,Lumerical FDTD; 复现; 不对称光栅; 衍射效率; 不同级,Lumerical FDTD模拟复现不对称光栅衍射效率研究 在光子学研究中,不对称光栅的衍射效率研究一直是前沿科学领域关注的重点之一。由于不对称光栅的复杂几何结构和衍射特性,理论解析存在一定的难度,这使得通过数值仿真方法来研究和预测不对称光栅的衍射效率变得尤为重要。Lumerical FDTD(时域有限差分法)作为一种先进的仿真工具,能够在频域内模拟和分析光波与光栅相互作用的物理过程,进而获得精确的衍射效率计算结果。 不对称光栅在光学器件中扮演着关键角色,例如在光谱仪、光学传感器和光学通讯设备中。这些器件的性能很大程度上取决于光栅衍射效率的优化。因此,精确计算和复现不对称光栅的多级衍射效率,对于指导实际光栅设计和制造具有重大意义。 Lumerical FDTD模拟研究不仅能够复现不对称光栅的衍射效率,还能解析光栅的物理特性,如光波与光栅相互作用的细节,从而帮助研究者深入理解光栅的衍射机制。通过调整光栅的结构参数,如栅线宽度、深度以及栅线间距,研究者可以优化光栅的衍射性能,实现特定的光学功能。 此外,基于Lumerical FDTD仿真的研究还能够帮助实验物理学家在进行实际测量之前预估可能的结果,并对实验设计进行指导。这种理论与实验相结合的方法,不仅提高了研究效率,也加深了对物理现象的理解。 从文件名称列表中可以看出,这些文档涵盖了不对称光栅衍射效率研究的多个方面,包括引言、理论分析、模拟仿真和应用研究等。这些材料对于研究人员深入探究不对称光栅的物理性能、设计优化以及在不同光学系统中的应用具有重要的参考价值。 文件列表中还包含了一个图像文件“1.jpg”,它可能提供了对不对称光栅结构或仿真结果的直观展示,这对于理解研究内容和结果具有辅助作用。而其他文档则包含了大量的理论分析和仿真数据,为深入研究提供了基础数据和分析框架。 Lumerical FDTD仿真在不对称光栅衍射效率研究中扮演着重要角色,它不仅能够精确复现光栅的多级衍射效率,还能够帮助研究人员在理论上深化对光栅物理特性的理解,并指导实际应用的设计与优化。这份工作对于推动光学技术的进步、开发新型光学器件具有重要的科学价值和应用前景。
2025-10-25 14:47:17 829KB scss
1
内容概要:本文围绕2018年Science论文中的中红外全介质硅纳米柱超表面模型展开,重点复现并仿真了双椭圆纳米柱结构通过打破对称角实现BIC(连续域束缚态)共振效应的物理过程。采用FDTD(时域有限差分)方法对单元结构、共振场分布、透射峰及Q值进行仿真分析,提供了参数扫描脚本与Q值计算工具,支持共振峰随尺寸因子S和对称角theta的调控,具备良好的可拓展性。 适合人群:光学工程、光子学、纳米材料及相关领域的科研人员,具备一定电磁仿真基础的研究生或高年级本科生。 使用场景及目标:①掌握BIC超表面的设计原理与FDTD仿真方法;②实现共振峰调谐与高Q值优化;③拓展至中红外分子编码、传感、滤波等光谱调控应用。 阅读建议:结合提供的FDTD模型、脚本与Word教程进行实践操作,重点关注结构参数对共振特性的影响,建议在仿真过程中逐步调整S和theta以观察光谱响应变化。
2025-10-23 15:21:40 3.46MB
1
联合分析球状颗粒Mie散射特性:Lumerical FDTD与Matlab的互补应用研究,Lumerical FDTD与Matlab联合分析球状颗粒的Mie散射特性 ,Lumerical FDTD; Matlab; 球状颗粒; Mie散射特性,Lumerical-Matlab联合分析Mie散射特性 球状颗粒的Mie散射特性是光学和光子学领域研究中的重要内容。Mie散射理论提供了一种精确计算光与均匀球形颗粒相互作用的方法。为了更好地理解和研究这一特性,研究者们倾向于采用多种计算工具和软件进行联合分析。在这些工具中,Lumerical FDTD和Matlab是两个非常重要的工具。 Lumerical FDTD是一种基于有限差分时域(Finite-Difference Time-Domain, FDTD)方法的光学模拟软件。它能够模拟复杂结构对光波的影响,包括波的传播、散射、反射和折射等现象。FDTD方法的优势在于能够直接计算电磁场在时域中的变化,因此能够模拟光与物质相互作用的瞬态过程。 Matlab是一种广泛使用的高性能数值计算和可视化软件。它提供了强大的数学计算功能,能够进行矩阵运算、数据拟合、信号处理、图像处理等多个领域的应用。在光散射的研究中,Matlab通常用于数据分析、后处理以及算法开发。 当我们将Lumerical FDTD与Matlab联合使用时,可以在FDTD软件中进行光与球状颗粒相互作用的数值模拟,得到散射场的空间分布和时域信息。然后,可以将模拟得到的数据导出到Matlab中进行后处理,如绘制散射效率、角度分布等散射特性曲线,以及进行进一步的数据分析和算法开发。 球状颗粒的Mie散射特性研究在多个领域都有应用价值。例如,在大气科学中,研究大气中悬浮颗粒的散射特性对于理解云层形成和大气辐射传输具有重要意义。在材料科学中,研究微粒在不同波长下的散射特性有助于材料的光学设计和性能评估。在生物医学工程中,研究细胞和组织对光的散射特性对于光学成像和诊断技术的发展也非常重要。 为了实现Lumerical FDTD与Matlab的联合分析,研究者需要熟悉两个软件的基本操作和接口编程。例如,通过编写脚本程序,可以自动化数据的导出和导入过程,从而提高研究效率。此外,为了确保联合分析的准确性,还需要对模拟结果进行校验和验证。 通过联合分析球状颗粒的Mie散射特性,研究者可以更深入地了解光与物质相互作用的物理过程,为相关领域的技术开发和应用研究提供理论依据和技术支持。
2025-10-18 18:28:48 38KB safari
1