近年来,随着自动驾驶技术的快速发展,对车辆行为理解的准确性提出了更高的要求。其中,车辆换道行为作为道路交通中常见的复杂动态行为,成为了研究的热点。基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,结合了图卷积网络(GCN)和Transformer模型的优势,提出了一种新颖的解决方案,旨在提高预测的准确性和实时性。 图卷积网络(GCN)在处理非欧几里得数据方面表现卓越,尤其适合处理图结构数据。在车辆换道行为建模中,GCN可以有效地捕捉车辆与周围车辆之间的空间关系和交互作用。通过图结构表示交通网络,GCN能够对车辆之间的相对位置、速度和加速度等动态特征进行编码,从而学习到车辆行为的局部特征表示。 Transformer模型最初被设计用于自然语言处理(NLP)领域,尤其是序列到序列的学习任务。Transformer的核心在于自注意力(Self-Attention)机制,该机制能够让模型在处理序列数据时,考虑到序列内各元素之间的长距离依赖关系,这对于序列预测问题来说至关重要。在车辆换道预测任务中,Transformer可以帮助模型捕捉时间序列上的特征,如车辆的历史轨迹、速度变化趋势等,从而生成更准确的未来轨迹预测。 结合GCN和Transformer,研究人员提出了多种方法来优化车辆换道行为的建模与轨迹预测。一种常见的方法是将GCN用于构建车辆之间相互作用的图结构,然后利用Transformer来处理时间序列数据。GCN负责编码车辆之间的空间关系,而Transformer则关注于时间序列的动态变化。此外,研究人员还可能引入注意力机制来进一步优化模型的性能,使得模型在预测时更加关注与换道行为相关的车辆和其他环境因素。 在实际应用中,基于GCN-Transformer的模型能够为车辆提供连续的轨迹预测,这对于提高自动驾驶系统的决策能力至关重要。通过提前预知周围车辆的潜在换道行为,自动驾驶车辆可以更好地规划自己的行驶路线和行为,从而提高道路安全性和交通流的效率。 此外,基于GCN-Transformer的模型在处理大规模交通场景时表现出色。大规模交通网络中包含成千上万辆车,这些车辆的轨迹和行为相互影响,形成复杂的动态系统。GCN能够有效地处理这种大规模网络中的信息,而Transformer则保证了对长时间序列的分析能力。因此,该方法对于理解和预测复杂交通场景中的车辆行为具有重要的应用价值。 基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,通过结合空间关系建模能力和时间序列分析能力,为车辆换道预测提供了一种强大的技术手段。这种技术不仅能够提升自动驾驶系统的性能,还能在智能交通管理和城市规划等领域发挥重要作用。
2025-09-16 19:38:54 3.62MB
1
标题和描述中提到的"GCN预测-实战代码"指的是基于Graph Convolutional Networks (GCN)的预测模型的实践代码。GCN是一种用于处理图数据的深度学习模型,它在节点分类、链接预测和图分类等任务中表现出色。在本案例中,可能涉及到的是利用GCN进行某种预测,例如时间序列预测或者异常检测,结合了Long Short-Term Memory (LSTM)网络,这是一种常用的序列模型,善于捕捉序列数据中的长期依赖。 让我们深入了解GCNGCN是一种通过在图结构上进行卷积操作来学习节点特征表示的方法。它通过不断传播邻居节点的信息到中心节点,从而更新节点的特征向量,这个过程可以看作是图上的多层感知机。GCN的主要步骤包括图卷积、激活函数应用以及特征图的聚合。 接下来,LSTM是一种递归神经网络的变体,设计用于解决传统RNN在处理长序列数据时的梯度消失或爆炸问题。LSTM单元由三个门(输入门、遗忘门和输出门)组成,可以有效地学习和记忆长期依赖关系,这对于时间序列预测任务特别有用。 在提供的文件列表中,"gcn+lstm.py"可能是实现GCN-LSTM模型的Python代码,其中可能包含了定义模型结构、训练模型、评估性能等关键部分。"data_read.py"可能是用于读取和预处理数据的脚本,可能涉及数据清洗、特征提取和数据划分等步骤。"20180304000000_20180304235900.txt"等时间戳命名的文本文件可能是预测所需的原始数据,如传感器数据或交易记录等,而"环境txt"可能是记录实验环境配置的文件,包括Python版本、库版本等信息。 为了构建GCN-LSTM模型,通常需要以下步骤: 1. 数据预处理:加载数据,可能需要将时间序列数据转换为图结构,定义节点和边。 2. 构建模型:结合GCN和LSTM,定义模型结构,如先用GCN学习图的节点特征,然后将这些特征输入到LSTM中进行序列建模。 3. 训练模型:设置损失函数和优化器,对模型进行训练。 4. 预测与评估:在验证集或测试集上进行预测,并通过相关指标(如RMSE、MAE等)评估模型性能。 这个压缩包包含了一个结合GCN和LSTM进行预测任务的实际项目,通过分析和理解代码,可以深入学习这两种强大的深度学习模型在实际问题中的应用。
2024-09-01 17:07:42 688KB
1
在Cora和Citeseer数据集上用图卷积神经网络实现链路预测,包括GCN网络搭建、Cora和Citeseer数据集的数据预处理,以及链路预测网络的训练和测试代码。
2024-05-08 14:05:12 7KB Cora 链路预测 图卷积神经网络
1
毕业设计代码,基于时空图卷积(ST-GCN)的骨骼动作识别.zip
2024-05-02 14:53:37 52.56MB python
1
【探索人工智能的宝藏之地】 无论您是计算机相关专业的在校学生、老师,还是企业界的探索者,这个项目都是为您量身打造的。无论您是初入此领域的小白,还是寻求更高层次进阶的资深人士,这里都有您需要的宝藏。不仅如此,它还可以作为毕设项目、课程设计、作业、甚至项目初期的立项演示。 【人工智能的深度探索】 人工智能——模拟人类智能的技术和理论,使其在计算机上展现出类似人类的思考、判断、决策、学习和交流能力。这不仅是一门技术,更是一种前沿的科学探索。 【实战项目与源码分享】 我们深入探讨了深度学习的基本原理、神经网络的应用、自然语言处理、语言模型、文本分类、信息检索等领域。更有深度学习、机器学习、自然语言处理和计算机视觉的实战项目源码,助您从理论走向实践,如果您已有一定基础,您可以基于这些源码进行修改和扩展,实现更多功能。 【期待与您同行】 我们真诚地邀请您下载并使用这些资源,与我们一起在人工智能的海洋中航行。同时,我们也期待与您的沟通交流,共同学习,共同进步。让我们在这个充满挑战和机遇的领域中共同探索未来!
2024-03-24 23:03:38 161.43MB 毕业设计 课程设计 项目开发 实训作业
在PPI数据集上用图卷积神经网络实现节点分类,包括GCN分类网络搭建、PPI数据集的数据预处理,以及节点分类网络的训练和测试代码。
2024-01-06 14:44:02 7KB 图卷积神经网络
1
基于多标签的目标检测,与传统的木匾检测算法不同,最后实现分类
1
PyG-GCN_res-CS 这是使用C&S方法对模型的改进。 ogbn-arxiv 出模型: 查看C&S方法: 改善策略: 添加C&S方法 环境要求 pytorch == 1.7.1 pytorch_geometric == 1.6.3 ogb == 1.2.4 实验设置: 该模型为8层,共运行10次,共得出500个纪元。 python gcn_res_cs.py 详细的超参数: num_layers = 8 hidden_dim = 128 dropout = 0.5 lr = 0.01 runs = 10 epochs = 500 alpha = 0.2 beta = 0.7 num_correction_layers = 50 correction_alpha = 0.8 num_smoothing_layers = 50 smoothing_alpha =
2023-04-10 22:34:19 7KB Python
1
针对煤矿生产区域的监控视频较为模糊且人员行为类型复杂,常规行为识别方法的准确率较低的问题,提出了一种基于动态注意力与多层感知图卷积网络(DA-GCN)的煤矿人员行为识别方法。采用Openpose算法提取输入视频的人体关键点,得到3个维度、18个坐标的人体关键点信息,降低模糊背景信息的干扰;通过动态多层感知图卷积网络(D-GCN)提取人体关键点的空间特征,通过时间卷积网络(TCN)提取人体关键点的时间特征,提高网络对不同动作的泛化能力;使用动态注意力机制,增强网络对于动作关键帧、关键骨架的注意力程度,进一步缓解视频质量不佳带来的影响;使用Softmax分类器进行动作分类。通过场景分析,将井下行为分为站立、行走、坐、跨越和操作设备5种类型,构建适用于煤矿场景的Cumt-Action数据集。实验结果表明,DA-GCN在Cumt-Action数据集的最高准确率达到99.3%,最高召回率达到98.6%;与其他算法相比,DA-GCN在Cumt-Action数据集和公共数据集NTU-RGBD上均具有较高的识别准确率,证明了DA-GCN优秀的行为识别能力。
1
本文中有两个gif图需要将文件使用html的方式打开才可以看到,主要介绍了本人对图卷积网络的形象化的理解,希望能够帮助到大家共同努力,谢谢!
1